In Vitro Culture and the Production of Secondary Metabolites by Sempervivum spp. (Houseleek)

  • É. Kertész-Dobos
  • Á. László-Bencsik
  • B. Dános
Part of the Biotechnology in Agriculture and Forestry book series (AGRICULTURE, volume 51)

Abstract

The genus Sempervivum (Crassulaceae) contains approximately 80 species and several subspecies (Parnell 1988). The name is indicative of their evergreen, sempervirent nature (semper = always, vivum = living) (Csapody 1982). Houseleeks (Sempervivum spp.) grow mainly on sunny, barren hillsides, mostly at 1000–2000 m (Codignola et al. 1990). They are favourite plants in rockgardens, because they grow on walls and roofing tiles (Aurnhammer 1979).

Keywords

Sucrose Polysaccharide Photosynthesis Fructose Cytosol 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ammirato PV (1983) Embryogenesis. In: Evans DA, Sharp WR, Ammirato PV, Yamada Y (eds) Handbook of plant cell culture, vol 1. Macmillan, New York, pp 82–123Google Scholar
  2. Aurnhammer G (1979) Sempervivum. In: List PH, Hörhammer L (eds) Hagers Handbuch der pharmazeutischen Praxis, VI. Springer, Berlin Heidelberg New York, p 361Google Scholar
  3. Barbakadze W, Gakhokidze RA, Shengeliya Zh (1989) Preliminary investigation of water soluble polysaccharides from Georgian plants. Chem Nat Compounds 25(3):281–286CrossRefGoogle Scholar
  4. Blázovics A, Pronai L, Fehér J, Kéry á, Petri G (1993a) A natural antioxidant extract from Sempervivum tectorum. Phytother Res 7(1)95–97CrossRefGoogle Scholar
  5. Blázovics A, Fehér J, Fehér E, Kéry á, Petri G. (1993b) Liner protecting and lipid lowering effects of Sempervivum tectorum extract in the rat. Phytother Res 7(1):98–100CrossRefGoogle Scholar
  6. Brandao J, Salema R (1977) Callus and plantlets development from cultured leaf explants of Sedum telephium L. Z Pflanzenphysiol 85:1–8Google Scholar
  7. Codignola A, Fieschi M, Maffei M, Fusconi A (1990) Leaf anatomy and photosynthetic characteristics of succulent alpine plants growing at high elevations. Nordic J Bot 10(1):49–56CrossRefGoogle Scholar
  8. Csapody I (1982) Crassulaceae-Sempervivum tectorum L. In: Csapody I (ed) Védett növényeink. Gondolat Press, Budapest, pp 93–96Google Scholar
  9. Dános B (1992) Sempervivum tectorum. In: Dános B (ed) Gyógynövényismeret. Semmelweis Press, Budapest, p 41Google Scholar
  10. Dobos É, Dános B, László-Bencsik á (1994) Callus induction and shoot regeneration in Sempervivum tectorum. Plant Cell Tissue Organ Cult 36:141–143CrossRefGoogle Scholar
  11. Dudits D (1982) Kallusztenyészetek. In: Dudits D (ed) Fuzionált sejtek, hibrid növények. Akadémiai Press, Budapest, pp 21–24Google Scholar
  12. Dudits D (1990) A növényregenerálás eredményei és feltételei. In: Dudits D, Heszky L (eds) Növénybiotechnológia. MezEgazdasági Press, Budapest, pp 116–117Google Scholar
  13. Elstner EF (1987) Metabolism of activated oxygen species. In: Davis DD (ed) Biochemistry of plants, vol 11. Academic Press, New York, pp 253–315Google Scholar
  14. Fehér J, Vereckei A (1985) Szabadgyök-reakciók jelentŒsége az orvostudomány-ban. Biotéka `Biogal’ Pharmaceutical Industry, Medicinal Press, BudapestGoogle Scholar
  15. Flich CE, Evans DA, Sharp WR (1983) Organogenesis. In: Evans DA, Sharp WR, Ammirato PV, Yamada Y (eds) Handbook of plant cell culture, vol 1. Macmillan, New York, pp 13–81Google Scholar
  16. Friemert V, Heininger D, Kluge M, Ziegler H (1988) Temperature effects on malic acid efflux from the vacuoles and on the carboxylation pathways in Crassulacean acid metabolism plants. Planta 174(4):453–461CrossRefGoogle Scholar
  17. Frigot P (1960) Contribution à l’étude chimique de quelques Crassulacées et en particulier de divers. Sedum, Thése (Pharm) Univ ParisGoogle Scholar
  18. Gumenyuk LA, Borisenko AN (1979) Russian houseleek — new source of biologically active compounds. Farm Zh (Kiev) 3:72–73Google Scholar
  19. Gumenyuk LA, Golovatanya VF, Perova TV (1982) Phytochemical study on Sempervivum ruthenicum. Farm Zh (Kiev) 3:61–65Google Scholar
  20. Hegnauer R (1964) Sempervivum. In: Hegnauer R (ed) Chemotaxonomie der Pflanzen 3. Birkhauser, Basel, pp 572–584Google Scholar
  21. Kelly JG, Latzko E (1982) Carbon metabolism: the profound effects of illumination on the metabolism of photosynthetic cells. Progress in botany 44. Springer, Berlin Heidelberg New York, pp 103–131Google Scholar
  22. Kéry Á (1993) Sempervivum tectorum. In: Bernáth J (ed) Vadon termŒ és termesztett gyógynövények. Mezegazdasági Press, Budapest, pp 452–453Google Scholar
  23. Kéry Á, Blázovics A, Rozlosnik N (1992) Antioxidative properties of extracts from Sempervivum tectorum. Planta Med 58(7):A661-A662CrossRefGoogle Scholar
  24. Kolb W, Schwarz T (1984) Properties and costs of substances for extensive covering of flat roofs with vegetation. Gartenamt 33(2):83–90Google Scholar
  25. Kolb W, Schwarz T, Trunk R (1983) Planting roofs having a gravel covering. Zeitschrift für Vegetationstechnik im Landschafts und Sportstättenbau 6(4):143–151Google Scholar
  26. Kovács M, Priszter Sz (1974) A flóra és a vegetáció változása Magyarországon az utolsó száz évben. Bot Közlemények 61(3):185–197Google Scholar
  27. Kukhta EP, Aleksandrova IV, Paukov VN (1988) Polysaccharides from plant tissue cultures I. Properties and partial structure. Khimiya Prirodnykh Soedineniy Tashkent 3:323–346Google Scholar
  28. Kull V (1967) Der Einfluss der Bodentrockenheit auf den Kohlenhydratgehalt einiger Crassulaceen. Planta 72:344CrossRefGoogle Scholar
  29. Kutkova T (1990) Herbaceous plants for sites with extreme conditions in landscape architecture. Acta Univ Agric 5(1):67–73Google Scholar
  30. Larson RA (1988) The antioxidants of higher plants. Phytochemistry 27:969–978CrossRefGoogle Scholar
  31. Lotti G, Paradossi C, Marchini F (1991) A composition of new seed oils. Agrochimica 35:1–3, 56–68Google Scholar
  32. Müssel H, Kiermeier P (1993) Experience with xeromorphic plants for extensive green cover. Gartenamt 32(6):376–381Google Scholar
  33. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497CrossRefGoogle Scholar
  34. Nicolae M, Constantin N, Vectoria N, Cosmin NC (1986) Gel for regeneration of the epithelium. Rom. Ro 88580 (IPC A 17 K-031/715) Appl 112771Google Scholar
  35. Nordal A, Klevstrand R (1951) Studies of the constituents of crassulaceous plants. Acta Chem Scand 5:85 898CrossRefGoogle Scholar
  36. Oztan I, Arslan M (1993) Research carried out to determine the species of succulent plants that can be grown in the ecological conditions of Central Anatolia region and the possibilities of their use as ground cover from the landscape architectural point of view. Doga Turk Tarim ve Ormanclik Dergisi 17(2):347–358Google Scholar
  37. Paris R, Frigot P (1959) Sur l’isolement d’une flavanone á partir d’une Crassulacée indigène, le Sedum altissimum Poir. C R Hebdomadaires Séances Acad Sci 249:560Google Scholar
  38. Parnell J (1988) Revision of the genus Jovibarba and consideration of the Sempervivum tectorum/S. marmoreum complex and S. montanum subsp. carpaticum. Acta Bot Hung 34:1–2 209–224Google Scholar
  39. Pilou-Smith EAH, t’Hart H, Brederode J (1991) Seasonal variation of phosphoenolpyruvate carboxylase specific activity in fifteen species exhibiting facultative or obligate crassulacean acid metabolism. J Plant Physiol 138(5):581–586CrossRefGoogle Scholar
  40. Priszter SZ (1974) Sedum - és Sempervivum vizsgálatok. BotKözlemények 61(3)233–234Google Scholar
  41. Ramstad E, Lieberman H (1955) Studies on the acid metabolism of Crassulaceae. Medd Norsk Farm Selskap 17:214Google Scholar
  42. Roessner H, Popp M (1986) Ionic patterns in some Crassulaceae from Austrian habitats. Flora (Jena) 178(1):1–10Google Scholar
  43. Sátory É, Kéry Á, Petri G (1988) The measurement of the effect of an antiphlogistic agent against otitis. Gyógyszerészet XXXII. 9:486Google Scholar
  44. Schuber M, Kluge M (1979) Crassulacean acid metabolism (CAM) in succulents of Middle Europe: ecophysiological investigations in species of the genus Sempervivum. Flora (Jena) 168:1–2 205–216Google Scholar
  45. Soderstrom THR (1962) The isocitric acid content of Crassulacean plants and a few succulent species from other families. Am J Bot 49:850CrossRefGoogle Scholar
  46. Stevens JF, t’Hart H, Block A (1994) Epicuticular wax composition of some European Sedum species. Phytochemistry 35(2):389–399CrossRefGoogle Scholar
  47. Stevens JF, t’Hart H, Van Ham R, Elena ET (1995) Distribution of alkaloids and tannins in the Crassulaceae. Biochem Syst Ecol 23(2):157–165CrossRefGoogle Scholar
  48. Stevens JF, t’Hart H, Elema ET, Block A (1996) Flavonoid variation in Eurasian Sedum and Sempervivum. Phytochemistry 41(2):503–512CrossRefGoogle Scholar
  49. Street HE, Cockburn W (1972) The path of carbon in photosynthesis. In: Street HE, Cockburn W (eds) Plant metabolism. Pergamon Press, Oxford, pp 144–151Google Scholar
  50. Thomas DA, Andre M (1987) Oxygen and carbon dioxide exchanges in Crassulacean acid metabolism plants: I. Effect of water stress on hourly and daily patterns. Plant Physiol Biochem (Fr) 25(2):85–93Google Scholar
  51. Vickery HB, Wilson DG (1958) Crassulaceae. In: Hegnauer R (ed) Chemotaxonomie der Pflanzen III. Birkhäuser, Basel, pp 573–575Google Scholar
  52. White PR (1943) Nutrient deficiency studies and an improved inorganic nutrient for cultivation of excised tomato roots. Growth 7:53–65Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • É. Kertész-Dobos
  • Á. László-Bencsik
  • B. Dános
    • 1
  1. 1.Research Institute for Medicinal Plants2011 BudakalászHungary

Personalised recommendations