Skip to main content

Indolopyridoquinazoline, Furoquinoline, Canthinone and Protoberberine-Type Alkaloids from Phellodendron amurense Callus Tissues

  • Chapter
Medicinal and Aromatic Plants XII

Part of the book series: Biotechnology in Agriculture and Forestry ((AGRICULTURE,volume 51))

  • 699 Accesses

Abstract

Phellodendron amurense Rupr. (amur cork tree, Fig. 1) is a northern species belonging to the family Rutaceae and is found in Japan, Korea, northern China, Manchuria, Ussuri and Amur. It is a dioecious tree with rather thick branches reaching more than 20 m high in the mountains, whose flowers bloom greenish in May-July. The fruit is nearly globose, is about 1 cm across and turns black when ripe. Another three species are found in Japan: P. amurense Rupr. var. sachalinense F. Schmidt.,P. amurense Rupr. var. japonicum (Maxim.) Ohwi, P. amurense var. lavallei (Dode) Sprague, and also P. chinensis Schneid. in China (Ohwi 1984). Cortex Phellodendri is the dry stem bark of P. amurense Rupr. or P. chinensis Schneid., and is officially listed in the Japanese and Chinese Pharmacopoeia (Tang and Eisenbrand 1992). It is used as a crude drug in Japan, China and Korea: The bark and fruit have been used as a remedy for fever and the fruit has also been used as an expectorant. A decoction or powder is used for stomach relief and an anodyne, and “daraniske” made from the extract is a famous Japanese medicine. It is a remedy for kidney trouble, stomach, and bladder problems. It is also a strong antibiotic to treat bacillary dysentery, typhus and typhoid. The bark of another species P. chinensis is a better grade than that of the northern species. P. wilsonii Hay. and Kaneh. is used as an endemic; a decoction of the inner bark and root is taken for stomach relief and a remedy for kidney trouble.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bergman J (1983) The quinazolinocarboline alkaloids. In: Mansk RHF (ed) The alkaloids, vol XXI. Academic Press, London, pp 29–54

    Google Scholar 

  • Berinzaghi B, Muruzabal A, Labriola R, Deulofeu V (1945) Studies on argentine plants. VII. The structure of γ-fagarine. J Org Chem 10:181–183

    Article  CAS  Google Scholar 

  • Chen IS, Wu SJ, Lin YC, Tsai IL, Seki H, Ko FN, Teng CM (1994) Dimeric 2-quinolone alkaloid and antiplatelet aggregation constituents of Zanthoxylum simulans. Phytochemistry 36:237–239

    Article  CAS  Google Scholar 

  • Chen KS, Chang YL, Teng CM, Chen CF, Wu YC (2000) Furoquinolines with anti-platelet aggregation activity from leaves of Melicope confusa. Planta Med 66:80–81

    Article  PubMed  CAS  Google Scholar 

  • Cheng JT, Chang TK, Chen IS (1994) Skimmianine and related furoquinolines function as antagonists of 5-hydroxytryptamine receptors in animals. J Auton Pharmacol 14:365–374

    Article  PubMed  CAS  Google Scholar 

  • Chiou WF, Liao JF, Chen CF (1996) Comparative study on the vasodilatory effects of three quinazoline alkaloids isolated from Evodia rutaecarpa J Nat Prod 59:374–378

    Article  PubMed  CAS  Google Scholar 

  • Choi MS, Shin DI, Park YG (1966) Berberine production by callus suspension cultures of cork tree (Phellodendron amurense Rupr.). Korean J Pharmacogn 27(1):32–36

    Google Scholar 

  • Couillerot E, Caron C, Comoe L, Audran JC, Molinatti P, Zeches M, Le Men-Olivier L, Jardillier JC, Chenieux JC (1994) Benzophenanthridine and furoquinoline accumulation in cell suspension cultures of Fagara zanthoxyloides. Phytochemistry 37:425–428

    Article  CAS  Google Scholar 

  • Crespi-Perellino N, Guicciardi A, Malyszko G, Minghetti A (1986) Biosynthetic relationship between indole alkaloids produced by cell cultures of Ailanthus altissima. J Nat Prod 49:814–822

    Article  CAS  Google Scholar 

  • Gray AI, Bandari P, Waterman PG (1988) New protolimonoids from the fruits of Phellodendron chinense. Phytochemistry 27:1805–1808

    Article  CAS  Google Scholar 

  • Grundon MF (1988) Quinoline alkaloids related to anthranilic acid. In: Brossi A (ed) The alkaloids, vol 32. Academic Press, London, pp 341–438

    Google Scholar 

  • Hasegawa M, Shirato T (1952) Two new flavonoid glycosides from the leaves of Phellodendron amurense Rupr. J Am Chem Soc 75:5507–5511

    Article  Google Scholar 

  • Hino K, Yamaguch S, Ida Y, Satoh Y, Maoka T, Itoh Y (1995) Antioxidative activities of constituents in Phellodendron amurense bark. Igaku to Seibutugaku 131:59–62

    CAS  Google Scholar 

  • Ida Y, Satoh Y, Ohtsuka M, Nagasao M, Shoji I (1994) Phenolic constitutents of Phellodendron amurense bark. Phytochemistry 35:209–215

    Article  CAS  Google Scholar 

  • Ikuta A (1988) Isoquinoline. In: Constabel F, Vasil IK (eds) Cell culture and somatic cell genetics of plants, vol 5. Phytochemicals in plant cell cultures. Academic Press, New York, pp 289–314

    Chapter  Google Scholar 

  • Ikuta A, Nakamura T (1995) Canthin-6-one from the roots of Phellodendron amurense. Planta Med 61:581–582

    Article  PubMed  CAS  Google Scholar 

  • Ikuta A, Urabe H (1999) 7-Hydroxyrutaecarpine from fruit of Phellodendron amurense. Nat Med 53:333

    Google Scholar 

  • Ikuta A, Nakamura T, Urabe H(1996) Indole alkaloids from Phellodendron amurense callus tissues and their regulation. In: Xu Z-H, Chen Z-H (eds) Plant biotechnology for sustainable development of agriculture. China Forestry Publishing House, pp 263–267

    Google Scholar 

  • Ikuta A, Nakamura T, Urabe, H (1998a) Indolopyridoquinazoline furoquinoline and canthinone type alkaloids from Phellodendron amurense callus tissues. Phytochemistry 48:285–292

    Article  CAS  Google Scholar 

  • Ikuta A, Urabe H, Nakamura T (1998b) A new indolopyridoquinazoline-type alkaloid from Phellodendron amurense callus tissues. J Nat Prod 61:1021–1041

    Article  Google Scholar 

  • Ikuta A, Tani T, Si S (1999) Study of rutaceous plant tissue cultures. Constituents of production of alkaloids from Evodia and Toddalia callus tissues.120th General Meet Japanese Pharmaceutical Society of Japan Tokushima, Part II., 160 pp (31po 014–003)

    Google Scholar 

  • Kim JH, Goo GH, Choi MS, Park YG (1992) Micropropagation and soil adjustment of cork tree (Phellodendron amurense Rupr.) through in vitro culture. Korean J Plant Tissue Cult 9(1): 37–42

    Google Scholar 

  • Kishi K, Yoshikawa K, Arihara S (1992) Limonoids and protolimonoids from the fruits of Phellodendron amurense. Phytochemistry 31:1335–1338

    Article  CAS  Google Scholar 

  • Kunio A (1986) Plantlet formation by intrapetiolar bud culture of Phellodendron amurense Rupr. For Tree Breed 138:24–26

    Google Scholar 

  • Kuroda H, Ikekawa T (1975) Berberine and palmatine JP 50013519 6

    Google Scholar 

  • Linsmaier E, Skoog F (1965) Organic growth factor requirement of tobacco tissue cultures. Physiol Plant 18:100–127

    Article  CAS  Google Scholar 

  • Lloyd G, McCown B (1980) Commercially feasible micropropagation of mountain laurel, Kamia latifolia by use of shoot-tip culture. Proc Int Plant Prop Soc 30:421–427

    Google Scholar 

  • Matsuda H, Wu JX, Tanaka T, Iinuma M, Kubo M (1997) Antinociceptive activities of 70% methanol extract of evodiae fructus (fruit of Evodia rutaecarpa var. bodinieri) and its alkaloidal components. Bio Pharm Bull 20:243–248

    Article  CAS  Google Scholar 

  • Matsuda H, Yoshikawa M, Ko S, Iinuma M, Kubo M (1998) Antinociceptive and antiinflammatory activities of evodiamine and rutaecarpine. Nat Med 52:203–208

    CAS  Google Scholar 

  • Matsuo M, Yamazaki M, Kashida Y (1966) Biosynthesis of skimmianine. Biochem Biophys Res Commun 23:679–682

    Article  PubMed  CAS  Google Scholar 

  • Mester I (1983) Structural diversity and distribution of alkaloids in the rutales. In: Waterman PG, Grundon MF (eds) Chemistry and chemical taxonomy of the Rutales. Academic Press, London, pp 31–96

    Google Scholar 

  • Miyaichi Y, Segi H, Tomimori T (1994) Studies on the constituents of the leaves of Phellodendron japonicum Maxim. Yakugaku Zasshi 114:186–199

    PubMed  CAS  Google Scholar 

  • Miyake M, Inaba N, Ayano S, Ozaki Y, Maeda H, Ifuku Y, Hasegawa S (1992) Limonoids in Phellodendron amurense (Kihada). Yakugaku Zasshi 112:343–347

    PubMed  CAS  Google Scholar 

  • Möhrle H, Kamper C, Schmid R (1980) Eine neue Synthese von Rutaecarpin. Arch Pharm 313:990–995

    Article  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nishioka I (1958) Studies on the sterols from Phellodendron amurense Rupr. (2). Isolation of 7-dehydrostigmasterol. Yakugaku Zasshi 78:1432–1434

    CAS  Google Scholar 

  • Ohmoto T, Koike K (1989) Chapter 3, canthin-6-one alkaloids. In: Bross A (ed) The alkaloids, vol 36. Academic Press, San Diego, pp 135–170

    Google Scholar 

  • Ohwi J (1984) A combined, much revised, and extended translation by the author of this flora of Japan (1953) and flora or Japan-Pteridophyta (1957). In: Meter FG, Walker EH (eds) Flora of Japan. Smithsonian Institute, Washington, pp 583–584

    Google Scholar 

  • Park YG, Choi MS (1999) Phellodendron amurense (cork tree): in vitro culture, micropropagation, and the production of berberine. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 43. Medicinal and aromatic plants XI. Springer, Berlin Heidelberg New York, pp 337–349

    Google Scholar 

  • Park JC, Kim LS, Choi YW (1992) Production of protoberberine-type alkaloid from cell cultures. II Culture methods for effective berberine production. Korean J Plant Tissue Cult 19(6): 323–329

    Google Scholar 

  • Perry LM, Metzger J (1980) Medicinal plants of East and Southeast Asia: attributed properties and uses. The MIT Press, Cambridge, MA pp 367

    Google Scholar 

  • Pusset J, Lopez JL, Pais M, Neirabeyeh MA, Veillon JM (1991) Isolation and 2D NMR studies of alkaloids from Comptonella sessilifoliola. Planta Med 57:153–155

    Article  PubMed  CAS  Google Scholar 

  • Roberts MF (1991) The quinazolinocarboline alkaloids. In vitro culture and the formation of secondary metabolites. In: Bajaj YSP (ed) Biotechnology in agriculture and forestry, vol 15. Medicinal and aromatic plants Ill. Springer, Berlin Heidelberg New York, pp 39–57

    Google Scholar 

  • Sheen WS, Tsai IL, Teng CM, Ko FN, Chen IS (1996) Indolopylydoquinazoline alkaloids with antiplatelet aggregation activity from Zanthoxylum integrifolium. Planta Med 62:175–176

    Article  PubMed  CAS  Google Scholar 

  • Sheu JR, Hung WC, Lee YM, Yen MH (1996) Mechanism of inhibition of platelet aggregation by rutaecarpine, an alkaloid isolated from Evodia rutaecarpa. Eur J Pharmacol 318:469–475

    Article  PubMed  CAS  Google Scholar 

  • Sheu JR, Kan YC, Hung WC (1998) The antiplatelet activity of Rutaecarpine, an alkaloid isolated from Evodia rutaecarpa, is mediated through inhibition of phospholipase C. Thromb Res 92:53–64

    Article  PubMed  CAS  Google Scholar 

  • Sheridan H, Bhandari P (1992) Canthin-6-one from the root bark of Phellodendron chinese. Planta Med 58:299

    Article  PubMed  CAS  Google Scholar 

  • Su R, Kim M, Kawaguchi H, Yamamoto T, Goto K, Taga T, Miwa Y, Kozuka M, Takahashi S (1990a) Triterpenoids from the Fruits of Phellodendron chinense SCHNEID.: the stereostructure of niloticin. Chem Pharm Bull 38:1616–1619

    Article  CAS  Google Scholar 

  • Su R, Kim M, Yamamoto T, Takahashi S (1990b) Antifeeding constituents of Phellodendron chinense fruit against Reticulitermes speratus. J Pestic Sci 15:567–572

    Article  CAS  Google Scholar 

  • Su R, Kim M, Nakajima S, Liu M (1994) Amides from the fruits of Phellodendron chinense. Acta Bot Sin 36:817–820

    CAS  Google Scholar 

  • Suzuki H, Kurihara S, Yoshikawa T, Ikuta A (1999) Isolation and characterization of cDNA clones encoding aromatic amino acid decarboxylase in alkaloid biosynthesis from Phellodendron amurense cell culture. 17th General Meet Japanese Society for Plant Cell and Molecular Biology, 40 pp (1Bp-06)

    Google Scholar 

  • Takagi S, Akiyama T, Kinoshita T, Sankawa U, Shibata S (1979) Minor basic constituents of Evodia Fruits. Shoyakugaku Zasshi (Jpn J Pharmacog) 33:30–34

    CAS  Google Scholar 

  • Tang W, Eisenbrand G (1992) Phellodendron amurense Rupr. In: Chinese drugs of plant origin, chemistry, pharmacology, and use in traditional and modern medicine. Springer Berlin Heidelberg New York, pp 759–761

    Chapter  Google Scholar 

  • Tomita M, Kunitomo J (1960) Studies on the alkaloids of rutaceous plants. Yakugaku Zasshi 80:880–884, 885–887, 1238–1244, 1300–1301

    CAS  Google Scholar 

  • Tomita M, Nakano T (1957) Studies on the alkaloids of Rutaceous plants. I. Alkaloids of Phellodendron amurense Prur. (1). Chem Pharm Bull 5:10–12

    CAS  Google Scholar 

  • Tsukamoto T, Nishioka I, Mihashi K, Miyahara H (1958) Studies on the sterols from Phellodendron amurense Rupr. I. Yakugaku Zasshi 78:1099–1101

    CAS  Google Scholar 

  • Vrkoc J, Sedmera P (1972) Extractives of Chloroxylon swietenia. Phytochemistry 11:2647–2648

    Article  CAS  Google Scholar 

  • Yamaguchi S, Kawamura T, Noro Y, Tanaka T (1998) Berberine contents in Phellodendron leaves. Nat Med (Tokyo) 52:452–454

    CAS  Google Scholar 

  • Yamazaki M, Ikuta A (1966) Biosynthesis of Evodia alkaloids. Tetrahedron Lett 3221–3224

    Google Scholar 

  • Yamazaki M, Ikuta A, Mori T, Kawana T (1967) Biosynthesis of Evodia alkaloids II. The participation of Cl-unit to the formation of indoloquinazoline alkaloids. Tetrahedron Lett 3317–3320

    Google Scholar 

  • Wada K, Yagi M, Matsumura A, Sasaki K, Sakata M, Haga M (1990) Isolation of limonin and obacunone from Phellodendri cortex shorten the sleeping time induced in mice by α-chloraloseurethane. Chem Pharm Bull 38:2332–2334

    Article  PubMed  CAS  Google Scholar 

  • Wu TS, Yeh JH, Chen KT, Lin LC, Chen CF (1995) 7-hydroxyrutaecarpine from Tetradium glabrifolium and Tetradium rutaecarpum. Hetreocycles 41:1071–1076

    Article  CAS  Google Scholar 

  • Yamada Y, Watanabe K (1980) Selection of high vitamin B6 producing strains in cultured green cells. Agric Biol Chem 44(11):2683–2687

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ikuta, A. (2002). Indolopyridoquinazoline, Furoquinoline, Canthinone and Protoberberine-Type Alkaloids from Phellodendron amurense Callus Tissues. In: Nagata, T., Ebizuka, Y. (eds) Medicinal and Aromatic Plants XII. Biotechnology in Agriculture and Forestry, vol 51. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-08616-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-08616-2_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07503-2

  • Online ISBN: 978-3-662-08616-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics