Ornithopus sativus Brot. (Serradella): In Vitro Culture, Phytochemical Studies, and Biotransformation

  • A. Kolbe
  • G. Krauss
  • B. Schneider
Part of the Biotechnology in Agriculture and Forestry book series (AGRICULTURE, volume 43)

Abstract

Ornithopus sativus Brot. (serradella, Portuguese for small saw, due to the shape of the leaves) (Fig. 1) belongs to the family Fabaceae. The leaves are 3–7 cm in length with imparipinnate sessile side leaves. The pedunculate umbel-like flowers are 5–8 mm in length, typically papillionaceous in shape, and of rose to white color. Like lupins, serradella prefers sandy soils but requires rather humid conditions. O. sativus is native to south-western Mediterranean Europe. Depending on the growth conditions, it is an annual or, as in a markedly mediterranean climate, a perennial species (Gladstones and McKeown 1977; Geister 1991). This plant has been cultivated since the middle of the 19th century in central Europe and later on to some extent in eastern Europe and in temperate regions of the Southern Hemisphere as a fodder plant. It easily becomes wild in areas of cultivation. In contrast with the lupins, serradella obviously is lacking in alkaloids and, therefore, is more compatible with cattle pasture. However, it has a rather small yield, and is competitive with clover only on poor sandy soils. Frequently, it is grown as an intermediate crop between cereals and root crops and, recently, it has been used as a green fertilizer. However, overall its economic importance is relatively limited.

Keywords

Alkaloid Tritium Palmitate Biotransformation Kinetin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adam G, Porzel A, Schmidt J, Schneider B, Voigt B (1996) New developments in brassinosteroid research. In: Atta-ur-Rahman (ed) Studies in natural products chemistry, vol 18. Elsevier, Amsterdam, pp 495–549Google Scholar
  2. Asakawa S, Abe H, Nishikawa N, Natsume M, Koshioka M (1996) Purification and identification of new acyl-conjugated teasterones in lily pollen. Biosci Biotechnol Biochem 60: 14161420Google Scholar
  3. Choi Y-H, Fujioka S, Harada A, Yokota T, Takatsuto S, Sakurai A (1996) A brassinolide biosynthetic pathway via 6-deoxocastasterone. Phytochemistry 43: 593–596CrossRefGoogle Scholar
  4. Clouse SD (1996) Molecular genetic studies confirm the role of brassinosteroids in plant growth and development. Plant J 19: 1–8CrossRefGoogle Scholar
  5. Deepak D, Khare A, Khare MP (1989) Plant pregnanes. Phytochemistry 28: 3255–3263CrossRefGoogle Scholar
  6. Galbraith MN, Horn DHS, Middleton EJ, Thomson JA, Siddall JB, Hafferl W (1969) The catabolism of crustecdysone in the blowfly Calliphora stygia. J Chem Soc Chem Commun: 1134–1135Google Scholar
  7. Geister G (1991) Farbatlas Landwirtschaftlicher Nutzpflanzen. Ulmer, StuttgartGoogle Scholar
  8. Gladstones JS, McKeown NR (1977) Botany and origins of serradella. J Agric (West Aust) 181027Google Scholar
  9. Hai T, Schneider B, Porzel A, Adam G (1996) Metabolism of 24-epi-castasterone in cell suspension cultures of Lycopersicon esculentum. Phytochemistry 41: 197–201CrossRefGoogle Scholar
  10. Kerr RG, Kelly K, Schulman A (1995) A novel biosynthetic route to pregnanes in the marine sponge Amphimedon compressa. J Nat Prod 58: 1077–1080CrossRefGoogle Scholar
  11. Kolbe A, Schneider B, Porzel A, Voigt B, Krauss G, Adam G (1994) Pregnane-type metabolites of brassinosteroids in cell suspension cultures of Ornithopus sativus. Phytochemistry 36: 671–673CrossRefGoogle Scholar
  12. Kolbe A, Schneider B, Porzel A, Schmidt J, Adam G (1995) Acyl-conjugated metabolites of brassinosteroids in cell suspension cultures of Ornithopus sativus. Phytochemistry 38: 633–636CrossRefGoogle Scholar
  13. Kolbe A, Schneider B, Porzel A, Adam G (1996) Metabolism of 24-epi-castasterone and 24-epibrassinolide in cell suspension cultures of Ornithopus sativus. Phytochemistry 41: 163–167CrossRefGoogle Scholar
  14. Lachaise F, Lafont R (1984) Ecdysteroid metabolism in a crab: Carcinus maenas. Steroids 43: 243–259PubMedCrossRefGoogle Scholar
  15. Maeda E (1965) Rate of lamina inclination in excised rice leaves. Plant Physiol 18: 813–827CrossRefGoogle Scholar
  16. Murashige T, Skoog F (1962) A revised medium for rapid growth and bio-assays with tobacco tissue cultures. Physiol Plant 15: 473–497CrossRefGoogle Scholar
  17. Parish EJ (1991) The biosynthesis of oxysteroids in plants and microorganisms. In: Patterson GW, Nes WD (eds) Physiology and biochemistry of sterols. American Oil Chemists’ Society, Champaign, Illinois, pp 324–336Google Scholar
  18. Rees HH (1989) Pathways of biosynthesis of ecdysone. In: Koolman J (ed) Ecdysone — from chemistry to mode of action. Thieme, Stuttgart pp 152–160Google Scholar
  19. Schmidt J, Spengler B, Adam G, Budzikiewicz H (1993a) Sterol constituents in seeds of Ornithopus sativus. Phytochemistry 33: 506–507CrossRefGoogle Scholar
  20. Schmidt J, Spengler B, Yokota T, Adam G (1993b) The co-occurrence of 24-epi-castasterone and castasterone in seeds of Ornithopus sativus. Phytochemistry 32: 1614–1615CrossRefGoogle Scholar
  21. Schneider B, Kolbe A, Porzel A, Adam G (1994) A metabolite of 24-epi-brassinolide in cell suspension cultures of Lycopersicon esculentum. Phytochemistry 36: 319–321CrossRefGoogle Scholar
  22. Seifert K, Härtling S, Porzel A, Johne S, Krauss G (1993) Phytoalexin accumulation in Ornithopus sativus as a response to elicitor treatment. Z Naturforsch [C] 48: 550–555Google Scholar
  23. Spengler B (1995) Brassinosteroide and Sterole aus den europäischen Kulturpflanzen Ornithopus sativus, Raphanus sativus and Secale cereale. PhD Thesis, University of HalleGoogle Scholar
  24. Spengler B, Schmidt J, Voigt B, Adam G (1995) 6-Deoxo-28-norcastasterone and 6-deoxo-24epicastasterone — two new brassinosteroids from Ornithopus sativus. Phytochemistry 40: 907–910Google Scholar
  25. Suzuki H, Inoue T, Fujioka S, Takatsuto S, Yanagisawa T, Yokota T, Murofushi N, Sakurai A (1994) Possible involvement of 3-dehydroteasterone in the conversion of teasterone to typhasterol in cultured cells of Catharanthus roseus. Biosci Biotechnol Biochem 58: 1186–1188CrossRefGoogle Scholar
  26. Wojciechowski ZA (1991) Biochemistry of phytosterol conjugates. In: Patterson GW, Nes WD (eds) Physiology and biochemistry of sterols. American Oil Chemists’ Society, Champaign, Illinois, pp 361–395Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • A. Kolbe
    • 1
  • G. Krauss
    • 2
  • B. Schneider
    • 3
  1. 1.Institut für PflanzenbiochemieHalleGermany
  2. 2.Sektion HydrogeologieUFZ — Umweltforschungszentrum Leipzig-Halle GmbHBad LauchstädtGermany
  3. 3.Max-Planck-Institut für Chemische ÖkologieJenaGermany

Personalised recommendations