Advertisement

Morinda Species: Biosynthesis of Quinones in Cell Cultures

  • E. Leistner
Part of the Biotechnology in Agriculture and Forestry book series (AGRICULTURE, volume 33)

Abstract

The genus Morinda belongs to the family Rubiaceae. Among the many species comprising this genus, six are of some pharmaceutical and technical importance (Kern et al. 1976). One of these is Morinda citrifolia which occurs in India and Southeast Asia. Its leaves and roots are used in the treatment of hypertension or as a diuretic and laxative. A more recent study (Younos et al. 1990) shows that extracts of the roots exhibit an analgesic and probably sedative effect on mice. Morinda lucida, another plant dealt with in this Chapter, grows in central Africa. Natives of central Africa use the plant as a diuretic, purgative and in the treatment of leprosy, fever, malaria, yellow fever, diarrhea and dysentery (Kern et al. 1976).

Keywords

Cell Suspension Culture Naphthalene Acetic Acid Mevalonic Acid Naphthoic Acid Ring Closure Reaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bauch HJ, Leistner E (1978a) Aromatic metabolites in cell suspension cultures of Galium mollugo L. Planta Med 33: 105–123CrossRefGoogle Scholar
  2. Bauch HJ, Leistner E (1978b) Attempts to demonstrate incorporation of labelled precursors into aromatic metabolites in cell suspension cultures of Galium mollugo L. Planta Med 33: 124–127CrossRefGoogle Scholar
  3. Breuer M, Igbavboa U, Kaiser A, Leistner E, Simantiras M, Weische A (1991) The o-succinylbenzoate synthase system in bacteria and plant cell suspension cultures. In: Bisswanger H, Ullrich J (eds) Biochemistry and physiology of thiamin diphosphate enzymes. VCH, Weinheim, pp 141–146Google Scholar
  4. Brickman TJ, Ozenberger BA, McIntosh MA (1990) Regulation of divergent transcription from the iron-responsive fepB-entC promoter-operator regions in Escherichia coli. J Mol Biol 212: 669–682PubMedCrossRefGoogle Scholar
  5. Demagos GP, Baltus W, Höfle G (1981) New anthraquinones and anthraquinone glycosides from Morinda lucida. Z Naturforsch 36b: 1180–1184Google Scholar
  6. Elkins MF, Earhart CF (1988) An Escherichia coli enterobactin cluster gene with sequence homology to trpE and pabB. Microbiol Lett 56: 35–40CrossRefGoogle Scholar
  7. El-Shagi H, Schulte U, Zenk MH (1984) Specific inhibition of anthraquinone formation by amino compounds in Morinda cell cultures. Naturwissenschaften 71: 267CrossRefGoogle Scholar
  8. Emmons GT, Campbell IM, Bentley R (1985) Vitamin K (menaquinone) biosynthesis in bacteria: purification and probable structure of an intermediate prior to o-succinylbenzoate. Biochem Biophys Res Commun 131: 956–960PubMedCrossRefGoogle Scholar
  9. Hawkins CF, Borges A, Perham RN (1989) A common structural motif in thiamine pyrophosphate binding enzymes. FEBS Lett 255: 77–82PubMedCrossRefGoogle Scholar
  10. Heide L, Leistner E (1981) 2-Methoxycarbonyl-3-prenyl-1, 4-naphthoquinone, a metabolite related to the biosynthesis of mollugin and anthraquinones in Galium mollugo L. J Chem Soc Chem Commun 1981: 334–336Google Scholar
  11. Heide L, Leistner E (1982) Versuche zur Synthese natürlich vorkommender prenylierter Naphthalinderivate. Nachweis eines neuen Prenylnaphthochinonderivatives in Galium mollugo. Z Naturforsch 37c: 354–362Google Scholar
  12. Hubacek I (1991) Zur Frage der Substrataktivierung in den von Isocitrat-Lyase, bzw. 1,4-Dihydroxy2-naphothoat-Synthetase katalysierten Reaktionen. Dissertation, ETH, ZürichGoogle Scholar
  13. Hubacek I, Martinoni B, Arigoni D (1990) Zum Mechanismus der enzymatischen Bildung von 1,4-Dihydroxy-2-naphthosäure. Jahrestagung Schweiz Chem Ges, Bern, Kurzlassung der Vanträge und Poster, p 9Google Scholar
  14. Igbavboa U (1981) Anlage und Lipochinonbildung einer photoautotrophen Zellkultur von Morinda lucida Benth. Diplom-Arbeit, Universität Münster, MünsterGoogle Scholar
  15. Igbavboa U, Leistner E (1990) Sequence of proton abstraction and stereochemistry of the reaction catalyzed by naphthoate synthase, an enzyme involved in menaquinone (vitamin K2) biosynthesis. Eur J Biochem 192: 441–449PubMedCrossRefGoogle Scholar
  16. Igbavboa U, Sieweke HJ, Leistner E, Röwer I, Hüsemann W, Barz W (1985) Alternative formation of anthraquinones and lipoquinones in heterotrophic and photoautotrophic cell suspension cultures of Morinda lucida Benth. Planta 166: 537–544CrossRefGoogle Scholar
  17. Inoue K, Shiobara Y, Nayeshiro H, Inouye H, Wilson G, Zenk MH (1979) Site of prenylation in anthraquinone biosynthesis in cell cultures of Galium mollugo. J Chem Soc Chem Commun 1979: 957–959CrossRefGoogle Scholar
  18. Inoue K, Nayeshiro H, Inouye H, Zenk M (1981) Anthraquinones in cell suspension cultures of Morinda citrifolia. Phytochemistry 20: 1693–1700CrossRefGoogle Scholar
  19. Inoue K, Shiobara Y, Nayeshiro H, Inouye H, Wilson G, Zenk MH (1984) Biosynthesis of anthraquinones and related compounds in Galium mollugo cell suspension cultures. Phytochemistry 23: 307–311CrossRefGoogle Scholar
  20. Inouye H, Leistner E (1988) Biochemistry of quinones. In: Patai S, Rappoport Z (eds) The chemistry of quinonoid compounds, vol II. Wiley, New York, pp 1293–1349CrossRefGoogle Scholar
  21. Inouye H, Ueda S, Inoue K (1978) Biosynthesis of prenylnaphthoquinone congeners in callus cultures of Catalpa ovata. Tetrahedron Lett 46: 4551–4554CrossRefGoogle Scholar
  22. Kaiser A, Leistner E (1990) Role of the entC gene in enterobactin and menaquinone biosynthesis in Escherichia coli. Arch Biochem Biophys 276: 331–335PubMedCrossRefGoogle Scholar
  23. Kaiser A, Leistner E (1992) The role of isochorismic acid in primary and secondary metabolism. World J Microbiol Biotechnol 8: 92–95CrossRefGoogle Scholar
  24. Kern W, Roth HJ, Schmid W, List PH, Hörhammer L (eds) (1976) Hager’s Handbuch der Pharmazeutischen Praxis, Band V. Springer, Berlin Heidelberg New YorkGoogle Scholar
  25. Kolkmann R, Leistner E (1987a) Synthesis, analysis and characterization of the coenzyme A esters of succinylbenzoic acid, an intermediate in vitamin K2 (menaquinone) biosynthesis. Z Naturforsch 42c: 542–552Google Scholar
  26. Kolkmann R, Leistner E (1987b) 4-(2′ -Carboxyphenyl)-4-oxo-butyryl coenzyme A ester, an intermediate in vitamin K2 (menaquinone) biosynthesis. Z Naturforsch 42c: 1207–1214Google Scholar
  27. Leduc C, Ruhnau P, Leistner E (1991) Isochorismate synthase from Rubiaceae cell suspension cultures. Plant Cell Rep 10: 334–337CrossRefGoogle Scholar
  28. Leistner E (1973) Mode of incorporation of precursors into alizarin (1,2-dihydroxy-9, 10-anthraquinone). Phytochemistry 12: 337–345CrossRefGoogle Scholar
  29. Leistner E (1975) Isolierung, Identifizierung und Biosynthese von Anthrachinonen in Zellsuspensionskulturen von Morinda citrifolia. Planta Med (Suppl) 214–224Google Scholar
  30. Leistner E (1985a) Biosynthesis of iso-chorismate-derived quinones. In: Conn EE (ed) The shikimic acid pathway. Plenum Press, New York, pp 243–261Google Scholar
  31. Leistner E (1985b) Occurrence and biosynthesis of quinones in woody plants. In: Higuchi T (ed) Biosynthesis and biodegradation of wood components. Academic Press, Orlando, pp 273–290Google Scholar
  32. Leistner E (1993) Die Bedeutung pflanzlicher Zellkulturen für das Verständnis von Biochemie und Physiologie des Sekundärstoffwechsels. ÖAZ 47: 203–205Google Scholar
  33. Liu J, Quinn N, Berchthold GA, Walsh CT (1990) Overexpression, purification and characterization of isochorismate synthase (EntC), the first enzyme involved in the biosynthesis of enterobactin from chorismate. Biochemistry 29: 1417–1425PubMedCrossRefGoogle Scholar
  34. Luckner M, Nover L, Böhm H (1977) Secondary metabolism and cell differentiation. Springer, Berlin Heidelberg New York, p 80CrossRefGoogle Scholar
  35. Ozenberger BA, Brickman TJ, McIntosh MA (1989) Nucleotide sequence of Escherichia coli isochorismate synthetase gene entC and evolutionary relationship of isochorismate synthetase and other chorismate-utilizing enzymes. J Bacteriol 171: 775–783PubMedGoogle Scholar
  36. Palaniappan C, Sharma V, Hudspeth MES, Meganathan R (1992) Menaquinone (Vitamin K2) biosynthesis: evidence that the Escherichia coli menD gene encodes both 2-succinyl-6-hydroxy-2, 4-cyclohexadiene-1-carboxylic acid synthase and a-ketoglutarate decarboxylase activities. J Bacteriol 174: 8111–8118PubMedGoogle Scholar
  37. Poulsen C, Verpoorte R (1992) Activities of chorismate utilizing enzymes and of enzymes involved in indole alkaloid biosynthesis in cell suspension cultures. Plant Physiol Biochem 30: 105–113Google Scholar
  38. Poulsen C, van der Heijden R, Verpoorte R (1991) Assay of isochorismate synthase from plant cell cultures by high-performance liquid chromatography. Phytochemistry 30: 2873–2876CrossRefGoogle Scholar
  39. Robins RJ, Payne J, Rhodes MJC (1986) The production of anthraquinones by cell suspension cultures of Cinchona ledgeriana. Phytochemistry 25: 2327–2334CrossRefGoogle Scholar
  40. Ruyter CM, Stöckigt J (1989) Neue Naturstoffe aus pflanzlichen Zell- und Gewebekulturen. GIT 33: 283–293Google Scholar
  41. Schaaf PMM, Heide L, Tani Y, Karas M, Deutzmann R, Leistner E (1993) Properties of isochorismate hydroxymutase from Flavobacterium K3–15. J Nat Prod 56: 1294–1303PubMedCrossRefGoogle Scholar
  42. Schulte U, El-Shagi H, Zenk MH (1984) Optimization of 19 Rubiaceae species in cell culture for the production of anthraquinones. Plant Cell Rep 3: 51–54CrossRefGoogle Scholar
  43. Sharma V, Meganathan R, Hudspeth MES (1993) Menaquinone (vitamin K2) biosynthesis: cloning, nucleotide sequence, and expression of the menC gene from Escherichia coli. J Bacteriol 175: 4917–4921PubMedGoogle Scholar
  44. Sieweke HJ, Leistner E (1991) o-Succinylbenzoate: coenzyme A ligase, an enzyme involved in menaquinone (vitamin K2) biosynthesis, displays broad specificity. Z Naturforsch 46c: 585–590Google Scholar
  45. Sieweke HJ, Leistner E (1992) O-Succinylbenzoate: coenzyme A ligase from anthraquinone producing cell suspension cultures of Galium mollugo. Phytochemistry 31: 2329–2335CrossRefGoogle Scholar
  46. Simantiras M, Leistner E (1991) Cell free synthesis of o-succinylbenzoic acid in protein extracts from anthraquinone and phylloquinone (vitamin K1) producing plant cell suspension cultures. Occurrence of intermediates between isochorismic and o-succinylbenzoic acid. Z Naturforsch 46c 364–370Google Scholar
  47. Simantiras M, Schmidt K, Leistner E (1991) 4-(2′-Carboxyphenyl)-4-oxobutyrate: preparative isolation from anthraquinone producing cell suspension cultures of Galium mollugo. Phytochemistry 30: 823–824CrossRefGoogle Scholar
  48. Suzuki H, Matsumoto (1988) Anthraquinone: production by plant cell culture. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 4. Medicinal and aromatic plants I. Springer, Berlin Heidelberg New York, pp 237–250CrossRefGoogle Scholar
  49. Teuscher E (1973) Probleme der Prodkution sekundärer Pflanzenstoffe mit Hilfe von Zellkulturen. Pharmazie 28: 6–18PubMedGoogle Scholar
  50. Thomson RH (1987) Naturally occurring quinones III: recent advances. Chapman and Hall, LondonGoogle Scholar
  51. Tiwari RD, Singh J (1977) Structural study of the anthraquinone glycoside from the flowers of Morinda citrifolia. J Indian Chem Soc 54: 429Google Scholar
  52. Tummuru MKR, Brickman TJ, McIntosh MA (1989) The in vitro conversion of chorismate to isochorismate catalyzed by the Escherichia coli entC gene product. J Biol Chem 264: 20547–20551PubMedGoogle Scholar
  53. Uesato S, Ueda M, Inouye H, Kuwajima H, Yatsuzuka M, Takaishi K (1984) Iridoids from Galium mollugo. Phytochemistry 23: 2535–2537CrossRefGoogle Scholar
  54. Van den Berg AJJ, Labadie RP (1988) Rhamnus spp. In vitro production of anthraquinones, anthrones, and dianthrones. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 4. Medicinal and aromatic plants I. Springer, Berlin Heidelberg New York, pp 513–528CrossRefGoogle Scholar
  55. Van den Berg AJJ, Labadie RP (1989) Quinones. In: Harborne JB (ed) Methods in plant biochemistry, vol 1. Academic Press, Orlando, pp 451–491Google Scholar
  56. Weische A, Johanni M, Leistner E (1987a) Biosynthesis of o-succinylbenzoic acid I. Cell free synthesis of o-succinylbenzoic acid from isochorismic acid in enzyme preparations from vitamin K producing bacteria. Arch Biochem Biophys 256: 212–222PubMedCrossRefGoogle Scholar
  57. Weische A, Garvert W, Leistner E (1987b) Biosynthesis of o-succinylbenzoic acid II. Properties of osuccinylbenzoic acid synthase, and enzyme involved in vitamin K2 biosynthesis. Arch Biochem Biophys 256: 223–231PubMedCrossRefGoogle Scholar
  58. Wijnsma R, Verpoorte R (1986) Antraquinones in Rubiaceae. In: Zechmeister L, Herz W, Grisebach H, Kirby GW, Tamm Ch (eds) Progress in the chemistry of organic natural products. Springer, Vienna, pp 79–149Google Scholar
  59. Wijnsma R, Verpoorte R, Mulder-Krieger Th, Baerheim Svendsen A (1984) Anthraquinones in callus cultures of Cinchona ledgeriana. Phytochemistry 23: 2307–2311CrossRefGoogle Scholar
  60. Wijnsma R, Go JTKA, Harkes PAA, Verpoorte R, Baerheim Svendsen A (1986) Anthraquinones in callus cultures of Cinchona pubescens. Phytochemistry 25: 1123–1126CrossRefGoogle Scholar
  61. Yamamoto H, Tabata M, Leistner E (1987) Cytological changes associated with induction of anthraquinone synthesis in photoautotrophic cell suspension cultures of Morinda lucida. Plant Cell Rep 6: 187–190CrossRefGoogle Scholar
  62. Young IG, Batterham TJ, Gibson F (1969) The isolation, identification and properties of isochorismic acid. An intermediate in the biosynthesis of 2,3-dihydroxybenzoic acid. Biochem Biophys Acta 177: 389–400PubMedCrossRefGoogle Scholar
  63. Younos C, Rolland A, Fleurentin J, Lanhers MC, Misslin R, Mortier F (1990) Analgesic and behavioural effects of Morinda citrifolia. Planta Med 56: 430–434PubMedCrossRefGoogle Scholar
  64. Zenk MH (1991) Chasing the enzyme of secondary metabolism: plant cell culture as a pot of gold. Phytochemistry 30: 3861–3863CrossRefGoogle Scholar
  65. Zenk MH, El-Shagi H, Schulte U (1975) Anthraquinone production by cell suspension cultures of Morinda citrifolia. Planta Med (Suppl) 79–101Google Scholar
  66. Zenk MH, Schulte U, El-Shagi (1984) Regulation of anthraquinone formation by phenoxyacetic acids in Morinda cell cultures. Naturwissenschaften 71: 266CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • E. Leistner
    • 1
  1. 1.Institut für Pharmazeutische BiologieRheinische Friedrich Wilhelms UniversitätBonnGermany

Personalised recommendations