• Michiko G. Minty
  • Frank Zimmermann
Part of the Particle Acceleration and Detection book series (PARTICLE)


Many applications of particle accelerators require beam cooling, which refers to a reduction of the beam phase space volume or an increase in the beam density via dissipative forces. In electron and positron storage rings cooling naturally occurs due to synchrotron radiation, and special synchrotron-radiation damping rings for the production of low-emittance beams are an integral part of electron-positron linear colliders. For other types of particles different cooling techniques are available. Electron cooling and stochastic cooling of hadron beams are used to accumulate beams of rare particles (such as antiprotons), to combat emittance growth (e.g., due to scattering on an internal target), or to produce beams of high quality for certain experiments. Laser cooling is employed to cool ion beams down to extremely small temperatures. Here the laser is used to induce transitions between the ion electronic states and the cooling exploits the Dopper frequency shift. Electron beams of unprecedentedly small emittance may be obtained by a different type of laser cooling, where the laser beam acts like a wiggler magnet. Finally, designs of a future muon collider rely on the principle of ionization cooling. Reference [1] gives a brief review of the principal ideas and the history of beam cooling in storage rings; a theoretical dicussion and a few practical examples can be found in [2].


Storage Ring Beta Function Laser Cool Electron Cool Momentum Spread 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. Möhl: Physica Scripta T22, 21 (1998)Google Scholar
  2. 2.
    D.V. Pestrikov: Beam Cooling. In: Beam Measurements. Proc. US-CERNJapan-Russian School on Beam Measurement, Montreux, Switzerland, 1998, ed. by S.I. Kurokawa, S.Y. Lee, E. Perevedentsev, S. Turner (World Scientific, 2000 )Google Scholar
  3. 3.
    G.I. Budker: Atomnaja Energia 22, 346 (1967)Google Scholar
  4. 4.
    J. Bosser: Electron Cooling. In: Proc. 4th Advanced Accelerator Physics Course, CERN Accelerator School, CERN 92–01, 1992Google Scholar
  5. 5.
    S.P. Moller: Cooling Techniques. In: Proc. CERN Acc. School, Jyvaeskylae 1992, CERN-94–01, 1994Google Scholar
  6. 6.
    Ya.S. Derbenev, A.N. Skrinsky: In: Proc. of the 10th Internat. Conf. on High Energy Accel., Serpukhov, 1977 v. 1, p. 516Google Scholar
  7. 7.
    A. Chao: Physics of Collective Beam Instabilities in High Energy Accelerators ( Wiley, New York 1993 )Google Scholar
  8. 8.
    J. Bosser, C. Carli, M. Chanel, L. Marie, D. Möhl, G. Tranquille: Nucl. Instr. Meth. A 441, 60 (2000)CrossRefADSGoogle Scholar
  9. 9.
    J. Bosser, C. Carli, M. Chanel, C. Hill, A. Lombardi, R. Maccaferri, S. Maury, D. Möhl, G. Molinari, S. Rossi, E. Tanke, G. Tranquille, M. Vretenar: Part. Acc. 63, 171 (1999)Google Scholar
  10. 10.
    G. Tranquille: Optimum Parameters for Electron Cooling. Presented at Beam Cooling and Related Topics Workshop, 13–18 May, 2001, Bad Honnef. CERN/PS 2001–056 (BD) (2001)Google Scholar
  11. 11.
    C. Rubbia: In: Proc. of the Workshop on Producing High Luminosity High Energy Proton-Antiproton Collisions, Berkeley, LBL-7574, 1978, p. 98Google Scholar
  12. 12.
    S.Y. Lee, P. Colestock, K.Y. Ng: Electron Cooling in High Energy Colliders. FERMILAB-FN-657 (1997)Google Scholar
  13. 13.
    I. Ben-Zvi, J. Kewisch, J. Murphy, S. Peggs: Nucl. Instr. Meth. A 463, 94 (2001)CrossRefADSGoogle Scholar
  14. 14.
    I. Koop, V. Parkhomchuk, V. Reva et al.: In: Proc. IEEE PAC 2001, Chicago, 2001 ( IEEE, Piscataway 2001 )Google Scholar
  15. 15.
    D. Möhl: Nucl. Instr. Meth. A 391, 164 (1997)CrossRefADSGoogle Scholar
  16. 16.
    D. Möhl: Cooling of Particle Beams In: Advances of Accelerator Physics and Technologies, Adv. Ser. Direct. High Energy Phys. 12, ed. by H. Schopper ( World Scientific, Singapore, 1993 ) p. 359Google Scholar
  17. 17.
    F. Sacherer: Stochastic Cooling Theory. CERN-IST-TH/78–11. Talk given at the ISR seminar on 24th April 1978Google Scholar
  18. 18.
    H. Herr, D. Möhl: Bunched Beam Stochastic Cooling. In: Proc. Workshop on Cooling High Energy Beams, Madison 1978, CERN-PS-DI Note 79–3 and CERN-EP Note 79–34Google Scholar
  19. 19.
    A.A. Mikhailichenko, M.S. Zolotorev: Phys. Rev. Lett. 71, 4146 (1993)CrossRefADSGoogle Scholar
  20. 20.
    M.S. Zolotorev, A.A. Zholents: Phys. Rev. E 50, 3087 (1994)CrossRefADSGoogle Scholar
  21. 21.
    D. Boussard: Evaluation of Transverse Emittance Growth from Damper Noise in the Collider. CERN Internal Report SL/Note 92–79 (RFS)Google Scholar
  22. 22.
    D. Möhl: Stochastic Cooling. In: Proc. CERN Accelerator School, Oxford, CERN 87–03, 1987Google Scholar
  23. 23.
    P.J. Channel: J. Appl. Phys. 52, 3791 (1981)CrossRefADSGoogle Scholar
  24. 24.
    S. Schröder, R. Klein, N. Boos et al.: Phys. Rev. Lett. 64, 2901 (1990)CrossRefADSGoogle Scholar
  25. 25.
    J.S. Hangst, J.S. Nielsen, O. Poulsen et al.: Phys. Rev. Lett. 67, 1238 (1995)CrossRefADSGoogle Scholar
  26. 26.
    J.S. Hangst, J.S. Nielsen, O. Poulsen, P. Shi, J.P. Schiffer Phys. Rev. Lett. 74, 4432 (1995)CrossRefADSGoogle Scholar
  27. 27.
    T. Kihara, H. Okamoto, Y. Iwashita, K. Oide, G. Lamanna, J. Wei: Study of Three-Dimensional Laser Cooling Method Based on Resonant Linear Coupling. KEK Preprint 98–158 (1998)Google Scholar
  28. 28.
    H. Okamoto, A.M. Sessler, D. Möhl: Phys. Rev. Lett. 72, 3977 (1994)CrossRefADSGoogle Scholar
  29. 29.
    H. Okamoto: Phys. Rev. E 50, 4982 (1994)CrossRefADSGoogle Scholar
  30. 30.
    V. Telnov: Laser Cooling of Electron Beams for Linear Colliders. SLAC-PUB7337 (1996)Google Scholar
  31. 31.
    Z. Huang, R.D. Ruth: Phys. Rev. Lett. 80, 976 (1998)CrossRefADSGoogle Scholar
  32. 32.
    K.-J. Kim, S. Chattopadhyay, C.V. Shank: Nucl. Instr. Meth. in Phys. Res. A 341, 351 (1994)Google Scholar
  33. 33.
    A. Hofmann: SSRL ACD-Note 38 (1986)Google Scholar
  34. 34.
    J. Urakawa: private communication (2001)Google Scholar
  35. 35.
    A. Tsunemi, A. Endo, I. Pogorelsky et al.: ‘Ultra-Bright X-Ray Generation using Inverse Compton Scattering of Picosecond CO2 Laser Pulses’. In: Proc. IEEE PAC 99, New York, 1999 ( IEEE, Piscataway 1999 ) p. 2552Google Scholar
  36. 36.
    E.N. Dementev, N.S. Dikanski, A.S. Medvedko, V.V. Parkhomchuk, D.V. Pestrikov: Soy. Phys. Tech. Phys. 25, 1001 (1980)Google Scholar
  37. 37.
    N.S. Dikanski, D.V. Pestrikov. In: Proc. of Workshop on Electron Cooling and Related Applications, Karlsruhe 1984, ed. by H. Poth, KfK 3846 (1984)Google Scholar
  38. 38.
    A. Rahman, J P Schiffer Phys. Rev. Lett. 57 (9), 1133 (1986)CrossRefADSGoogle Scholar
  39. 39.
    A. Rahman, J.P. Schiffer: Z. Phys. A 331, 71 (1988)ADSGoogle Scholar
  40. 40.
    J. Wei, X.-P. Li, A.M. Sessler: Phys. Rev. Lett. 73, 3089 (1994)CrossRefADSGoogle Scholar
  41. 41.
    J. Wei, H. Okamoto, A.M. Sessler: Phys. Rev. Lett. 80, 2660 (1998)CrossRefGoogle Scholar
  42. 42.
    X.-P. Li, A.M. Sessler, J. Wei: Crystalline Beam in a Storage Ring: How Long Can it Last? In: Proc. EPAC 94, London, 1994 ( World Scientific, Singapore 1994 ) p. 1379Google Scholar
  43. 43.
    R.W. Hasse, M. Steck: Ordered Ion Beams. In: Proc. EPAC 2000, Vienna, Austria, 1999 ( European Phys. Soc., Geneva 2000 ) p. 274Google Scholar
  44. 44.
    G. Stupakov: Echo Effect in Hadron Colliders. SSCL-579 (1992)Google Scholar
  45. 45.
    This picture arose in a discussion with K.-J. Kim during the 1999 US accelerator school in ArgonneGoogle Scholar
  46. 46.
    L.K. Spentzouris, P. Colestock: Coherent Nonlinear Longitudinal Phenomena in Unbunched Sycnhrotron Beams In: Proc. IEEE PAC 97, Vancouver, 1997 ( IEEE, Piscataway 1998 )Google Scholar
  47. 47.
    O.S. Brüning: On the Possibility of Measuring Longitudinal Echos in the SPS. CERN SL/95–83 (1995)Google Scholar
  48. 48.
    I.V. Agapov, G.H. Hoffstaetter, E. Vogel: Bunched Beam Echoes in the HERA Proton Ring. In: Proc. EPAC 2002, Paris, 2002 ( European Phys. Soc., Geneva 2002 )Google Scholar
  49. 49.
    G. Arduini, F. Ruggiero, F. Zimmermann. M-P. Zorzano: Transverse Beam Echo Measurements on a Single Proton Bunch at the SPS. CERN SL-Note2000–048 MD (2000)Google Scholar
  50. 50.
    C. Ankenbrandt, M. Atac, B. Autin et al.: Phys. Rev. S.T. Accel. Beams 2, 081001 (1999)Google Scholar
  51. 51.
    R. Palmer, A. Tollestrup, A. Sessler et al. (The µ+µ- Collider Collaboration): µ+µ- Collider. A Feasibility Study’. Submitted to the APS Summer Study, Snowmass 1996, on ‘New Directions for High-Energy Physics’. BNL-52503 (1996)Google Scholar
  52. 52.
    The MUCOOL Collaboration (C. Ankenbrandt et al.): Ionization Cooling Research and Development Program for a High Luminosity Muon Collider. FERMILAB-P-0904 (1998).Google Scholar
  53. 53.
    D. Neuffer: Part. Acc. 14, 75 (1983)Google Scholar
  54. 54.
    R.C. Fernow, J.C. Gallardo: Phys. Rev. E 52, 1039 (1995)CrossRefADSGoogle Scholar
  55. 55.
    M.J. Syphers, D.A. Edwards: An Introduction to the Physics of High Energy Accelerators( Wiley, New York 1993 )Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Michiko G. Minty
    • 1
  • Frank Zimmermann
    • 2
  1. 1.DESY - MDEHamburgGermany
  2. 2.AB Division, ABP GroupCERNGeneva 23Switzerland

Personalised recommendations