Skip to main content

LQG as a Design Theory

  • Chapter
Mathematical System Theory
  • 1067 Accesses

Abstract

Control system design is the task of finding a controller which satisfies prescribed specifications, under a given set of constraints. Desirable controller parameters must satisfy a certain set of identities and inequalities that represent the plant dynamics, constraints and specifications. Hence, control system design amounts to solving a set of equations subject to inequality constraints that contain the controller parameters as unknowns. Since the given set of equations and inequalities is often very complicated and not precisely known, a solution should be found by a cut-and-try method guided by intuition and experience, which has been a major tool of practical control system design.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R.E. Kalman, “Contributions to the theory of optimal control,” Boletin de la Sociedad Matematica, Mexicana, Vol 5, pp 102–119, 1960

    MathSciNet  Google Scholar 

  2. G.C. Newton, L.A. Gould and J.F. Kaiser, Analytical Design of Linear Feedback Controls, John Wiley and Sons, New York, 1957

    Google Scholar 

  3. L.S. Pontryagin, et. al., The Mathematical Theory of Optimal Process, Interscience Publishers, New York, 1962

    Google Scholar 

  4. R.E. Kalman, “When is a linear control system optimal?” Trans ASME, J of Basic Engineering, Vol 86, pp 1–10, 1964

    Google Scholar 

  5. H. Akaike, `Markovian representation of stochastic process by canonical variables,“ SIAM J Control, Vol 13, pp 162–173, 1975

    Article  MathSciNet  MATH  Google Scholar 

  6. Special Issue on Linear-Quadratic-Gaussian Estimation and Control Problems, IEEE Trans Automat Contr, Vol AC-16, 1971

    Google Scholar 

  7. I. Prigogine and I. Stengers, Order Out of Chaos: Man’s New Dialogue with Nature, Bantam Books, New York, 1984

    Google Scholar 

  8. P. Dorato (ed.),Robust Control IEEE Press, New York, 1987

    Google Scholar 

  9. B.D.O. Anderson and J.B. Moore, Linear Optimal Control, Prentice-Hall, New Jersey, 1971

    MATH  Google Scholar 

  10. B.D.O. Anderson, “Sensitivity improvement using optimal design,” Proc IEE, Vol 113, pp 1084 – 1086, 1966

    Google Scholar 

  11. J.B. Cruz and W.R. Perkins, “A new approach to the sensitivity problem in multivariable feedback systems,” IEEE Trans Automat Contr, Vol AC-9, pp 216 – 223, 1964

    Google Scholar 

  12. E. Kreindler, “Closed-loop sensitivity reduction of linear optimal control systems,” ibid, Vol AC-13, pp 254 – 262, 1968

    Google Scholar 

  13. T. Fujii, “A complete optimality condition in the inverse problem of optimal control,” SIAM J Control and Optimiz, Vol 22, pp 327–341, 1984

    Article  MATH  Google Scholar 

  14. T. Fujii, “A new approach to the LQ design from the viewpoint of the inverse regulator problem,” IEEE Trans Automat Contr, Vol AC-32, pp 995–1004, 1987

    Google Scholar 

  15. M.G. Safonov and M. Athans, “Gain and phase margin for multiloop LQG regulators,” ibid, Vol AC-22, pp 173–179, 1977

    Google Scholar 

  16. J.C. Doyle and G. Stein, “Robustness with observers,” ibid, Vol AC-24, pp 607 – 611, 1979

    Google Scholar 

  17. M. Athans, “Editorial: On the LQG Problems,” IEEE Trans. Automat Contr, Vol AC-16, p 528, 1971

    Google Scholar 

  18. H. H. Rosenbrock, “Good, Bad or Optimal,” ibid, Vol AC-16, 1971

    Google Scholar 

  19. I.R. Petersen, “A Riccati equation approach to the design of stabilizing controllers and observers for a class of uncertain linear systems,” IEEE Trans Automat Contr, Vol AC-30, pp 904 – 907, 1985

    Google Scholar 

  20. K. Zhou and P.P. Khargonekar, “An algebraic Riccati equation approach to H ° optimization,” Systems & Control Letters, Vol 11, pp 85–92, 1988

    Article  MathSciNet  MATH  Google Scholar 

  21. J.C. Doyle, K. Glover, P.P. Khargoneker and B.A. Francis, “State-space solutions to standard H2 and HL control problems,” ibid, Vol AC-34, pp 831 – 847, 1989

    Google Scholar 

  22. H.A. Simon, The Sciences of the Artificial, MIT Press, 1969

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kimura, H. (1991). LQG as a Design Theory. In: Antoulas, A.C. (eds) Mathematical System Theory. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-08546-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-08546-2_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-08548-6

  • Online ISBN: 978-3-662-08546-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics