Skip to main content

Part of the book series: Springer Series on Atomic, Optical, and Plasma Physics ((SSAOPP,volume 35))

Abstract

For many years, two-dimensional (2D) and three-dimensional (3D) fragment imaging techniques have been successfully used in the study of molecular structure [1] and for the study of the dynamics of various molecular dissociation processes, such as photodissociation [2] , dissociative recombination [3], atom—molecule collision-induced dissociation [4] , and dissociative charge exchange [5] . For fast molecular ion beams (in the present context, fast means kinetic energies in the range of keV to several MeV), the basic experimental scheme includes the induced dissociation of a single molecule from the beam, and the fully correlated measurement of the asymptotic velocity vectors of the outgoing atomic and molecular fragments. If the initial velocity of the molecule is large, then all the fragments will be projected into a cone defined by the ratio of their transverse velocities and the initial beam velocity. In such a case, the transverse velocities are deduced from the 2D position on the surface of a position—sensitive detector, while the longitudinal velocities can be derived from the (relative) time of arrival at the detector. The specific physical information provided by the images depends on the particular dissociation process. In general, one obtains information about the initial molecular quantum state prior to the dissociation, the final state of the fragments and about the dynamics of the reaction, such as angular dependence, kinetic energy release or potential curves.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Z. Vager, R. Naaman, E.P. Kanter: Nature 244, 426 (1989)

    Google Scholar 

  2. A.J.R. Heck, D.W. Chandler: Annu. Rev. Phys. Chem. 46, 335 (1995)

    Article  ADS  Google Scholar 

  3. D. Zajfman, Z. Amitay, C. Broude, P. Forck, B. Seidel, M. Grieser, D. Habs, D. Schwalm, A. Wolf: Phys. Rev. Lett. 75, 814 (1995)

    Article  ADS  Google Scholar 

  4. V. Horvat, O. Heber, R.L. Watson, R. Parameswaran, J.M. Blackadar: Nucl. Instrum. Methods B 99, 94 (1995)

    Article  Google Scholar 

  5. W.J. van der Zande, W. Koot, D.P. de Bruijn: Phys. Rev. Lett. 57, 1219 (1986)

    Article  ADS  Google Scholar 

  6. C. Firmani, E. Ruiz, C.W. Carlson, M. Lampton, F. Paresce: Rev. Sci. Instrum. 53, 570 (1982)

    Article  ADS  Google Scholar 

  7. C. Martin, P. Jelinsky, M. Lampton, R.F. Malina, H.O. Anger: Rev. Sci. Instrum. 52 1067 (1981)

    Article  ADS  Google Scholar 

  8. RoentDek GmbH, Germany

    Google Scholar 

  9. D. Kella et al.: Nucl. Instrum. Methods A329, 440 (1993)

    Article  ADS  Google Scholar 

  10. R. Wester et al.: Nucl. Instrum. Methods A413, 379 (1998)

    Article  Google Scholar 

  11. Dalsa Inc., Canada

    Google Scholar 

  12. D. Strasser, L. Lammich, H. Kreckel, S. Krohn, M. Lange, A. Naaman, D. Schwalm, A. Wolf, D. Zajfman: Phys. Rev. A 66, 032719 (2002)

    Article  ADS  Google Scholar 

  13. Z. Amitay, D. Zajfman: Rev. Sci. Instrum. 68, 1387 (1997)

    Article  ADS  Google Scholar 

  14. D. Strasser et al.: Rev. Sci. Instrum. 71, 3092 (2000)

    Article  ADS  Google Scholar 

  15. Z. Amitay, D. Zajfman, P. Forck, U. Hechtfischer, B. Seidel, M. Grieser, D. Habs, D. Schwalm, A. Wolf: Phys. Rev. A 54, 4032 (1996)

    Article  ADS  Google Scholar 

  16. R.H. Dalitz: Philos. Mag. 44, 1068 (1953)

    Google Scholar 

  17. D. Strasser, L. Lammich, S. Krohn, M. Lange, H. Kreckel, J. Levin, D. Schwalm, Z. Vager, R. Wester, A. Wolf, D. Zajfman: Phys. Rev. Lett. 86, 779 (2001)

    Article  ADS  Google Scholar 

  18. Z. Vager, D. Zajfman, T. Graber, E.P. Kanter: Phys. Rev. Lett. 71, 4319 (1993)

    Article  ADS  Google Scholar 

  19. D. Kella, Z. Vager: J. Chem. Phys. 102, 8424 (1995)

    Article  ADS  Google Scholar 

  20. R. Dörner et al.: Phys. Rep. 330, 95 (2000)

    Article  ADS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zajfman, D., Schwalm, D., Wolf, A. (2003). Multiparticle Imaging of Fast Molecular Ion Beams. In: Ullrich, J., Shevelko, V. (eds) Many-Particle Quantum Dynamics in Atomic and Molecular Fragmentation. Springer Series on Atomic, Optical, and Plasma Physics, vol 35. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-08492-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-08492-2_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05626-0

  • Online ISBN: 978-3-662-08492-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics