Multiparticle Imaging of Fast Molecular Ion Beams

  • D. Zajfman
  • D. Schwalm
  • A. Wolf
Part of the Springer Series on Atomic, Optical, and Plasma Physics book series (SSAOPP, volume 35)


For many years, two-dimensional (2D) and three-dimensional (3D) fragment imaging techniques have been successfully used in the study of molecular structure [1] and for the study of the dynamics of various molecular dissociation processes, such as photodissociation [2] , dissociative recombination [3], atom—molecule collision-induced dissociation [4] , and dissociative charge exchange [5] . For fast molecular ion beams (in the present context, fast means kinetic energies in the range of keV to several MeV), the basic experimental scheme includes the induced dissociation of a single molecule from the beam, and the fully correlated measurement of the asymptotic velocity vectors of the outgoing atomic and molecular fragments. If the initial velocity of the molecule is large, then all the fragments will be projected into a cone defined by the ratio of their transverse velocities and the initial beam velocity. In such a case, the transverse velocities are deduced from the 2D position on the surface of a position—sensitive detector, while the longitudinal velocities can be derived from the (relative) time of arrival at the detector. The specific physical information provided by the images depends on the particular dissociation process. In general, one obtains information about the initial molecular quantum state prior to the dissociation, the final state of the fragments and about the dynamics of the reaction, such as angular dependence, kinetic energy release or potential curves.


Transverse Velocity Dissociation Process Dalitz Plot Phosphor Screen Dissociative Recombination 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Z. Vager, R. Naaman, E.P. Kanter: Nature 244, 426 (1989)Google Scholar
  2. 2.
    A.J.R. Heck, D.W. Chandler: Annu. Rev. Phys. Chem. 46, 335 (1995)ADSCrossRefGoogle Scholar
  3. 3.
    D. Zajfman, Z. Amitay, C. Broude, P. Forck, B. Seidel, M. Grieser, D. Habs, D. Schwalm, A. Wolf: Phys. Rev. Lett. 75, 814 (1995)ADSCrossRefGoogle Scholar
  4. 4.
    V. Horvat, O. Heber, R.L. Watson, R. Parameswaran, J.M. Blackadar: Nucl. Instrum. Methods B 99, 94 (1995)CrossRefGoogle Scholar
  5. 5.
    W.J. van der Zande, W. Koot, D.P. de Bruijn: Phys. Rev. Lett. 57, 1219 (1986)ADSCrossRefGoogle Scholar
  6. 6.
    C. Firmani, E. Ruiz, C.W. Carlson, M. Lampton, F. Paresce: Rev. Sci. Instrum. 53, 570 (1982)ADSCrossRefGoogle Scholar
  7. 7.
    C. Martin, P. Jelinsky, M. Lampton, R.F. Malina, H.O. Anger: Rev. Sci. Instrum. 52 1067 (1981)ADSCrossRefGoogle Scholar
  8. 8.
    RoentDek GmbH, GermanyGoogle Scholar
  9. 9.
    D. Kella et al.: Nucl. Instrum. Methods A329, 440 (1993)ADSCrossRefGoogle Scholar
  10. 10.
    R. Wester et al.: Nucl. Instrum. Methods A413, 379 (1998)CrossRefGoogle Scholar
  11. 11.
    Dalsa Inc., CanadaGoogle Scholar
  12. 12.
    D. Strasser, L. Lammich, H. Kreckel, S. Krohn, M. Lange, A. Naaman, D. Schwalm, A. Wolf, D. Zajfman: Phys. Rev. A 66, 032719 (2002)ADSCrossRefGoogle Scholar
  13. 13.
    Z. Amitay, D. Zajfman: Rev. Sci. Instrum. 68, 1387 (1997)ADSCrossRefGoogle Scholar
  14. 14.
    D. Strasser et al.: Rev. Sci. Instrum. 71, 3092 (2000)ADSCrossRefGoogle Scholar
  15. 15.
    Z. Amitay, D. Zajfman, P. Forck, U. Hechtfischer, B. Seidel, M. Grieser, D. Habs, D. Schwalm, A. Wolf: Phys. Rev. A 54, 4032 (1996)ADSCrossRefGoogle Scholar
  16. 16.
    R.H. Dalitz: Philos. Mag. 44, 1068 (1953)Google Scholar
  17. 17.
    D. Strasser, L. Lammich, S. Krohn, M. Lange, H. Kreckel, J. Levin, D. Schwalm, Z. Vager, R. Wester, A. Wolf, D. Zajfman: Phys. Rev. Lett. 86, 779 (2001)ADSCrossRefGoogle Scholar
  18. 18.
    Z. Vager, D. Zajfman, T. Graber, E.P. Kanter: Phys. Rev. Lett. 71, 4319 (1993)ADSCrossRefGoogle Scholar
  19. 18.a
    D. Kella, Z. Vager: J. Chem. Phys. 102, 8424 (1995)ADSCrossRefGoogle Scholar
  20. 19.
    R. Dörner et al.: Phys. Rep. 330, 95 (2000)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • D. Zajfman
  • D. Schwalm
  • A. Wolf

There are no affiliations available

Personalised recommendations