Helium Double Ionization in Collisions with Electrons

Part of the Springer Series on Atomic, Optical, and Plasma Physics book series (SSAOPP, volume 35)


The investigation of electron-impact ionization of atoms contributed considerably to our understanding of the correlated fragmentation dynamics of atomic systems. This is mainly due to the early realization of kinematically complete experiments in the late 1960s [1], in which the momentum vectors of all participating continuum particles, in the initial and final states, were under control. These (e,2e) experiments allowed theoretical models to be tested critically and gave detailed insight into basic atomic-collision processes. Nevertheless, the fundamental three-body Coulomb continuum problem persisted from being solved satisfactory until in the last ten years when a number of very successful theoretical treatments were carried out that not only gave a precise description of the cross sections but also were able to explain the observed cross section pattern in terms of dominating interactions and contributing reaction mechanisms [2–4].


Momentum Transfer Double Ionization Large Momentum Transfer Cross Section Maximum Binary Peak 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Ehrhardt, M. Schulz, T. Tekaat, and K. Willmann: Phys. Rev. Lett. 22, 89 (1969)ADSCrossRefGoogle Scholar
  2. 2.
    T.N. Rescigno, M. Baertschy, W.A. Isaacs, and C.W. McCurdy, Science 286, 2474 (1999)CrossRefGoogle Scholar
  3. 3.
    C.T. Whelan, Science 286, 2457 (1999)CrossRefGoogle Scholar
  4. 4.
    J.S. Briggs, Comment. At. Mol. Phys. 23, 155 (1989)Google Scholar
  5. 5.
    A. Lahmam-Bennani, C. Dupre and A. Duguet: Phys. Rev. Lett. 63, 1582 (1989)ADSCrossRefGoogle Scholar
  6. 6.
    I. Taouil, A. Lahmam-Bennani, A. Duguet, and L. Avaldi: Phys. Rev. Lett. 81, 4600 (1998)ADSCrossRefGoogle Scholar
  7. 7.
    A. Dorn, R. Moshammer, C.D. Schröter, T.J.M. Zouros, W. Schmitt, H. Kollmus, R. Mann and J. Ullrich: Phys. Rev. Lett. 82, 2496 (1999)ADSCrossRefGoogle Scholar
  8. 8.
    R. Moshammer, M. Unverzagt, W. Schmitt, J. Ullrich and H. Schmidt-Böcking: Nucl. Instum. Methods Phys. B 108, 425 (1996)ADSCrossRefGoogle Scholar
  9. 9.
    A. Dorn, A. Kheifets, C.D. Schröter, B. Najjari, C. Höhr, R. Moshammer, and J. Ullrich: Phys. Rev. Lett. 86, 3755 (2001)ADSCrossRefGoogle Scholar
  10. 10.
    A. Huetz, P. Selles, D. Waymel and J. Mazeau: J. Phys. B24, 1917 (1991)ADSCrossRefGoogle Scholar
  11. 11.
    J.S. Briggs and V. Schmidt: J. Phys. B 33, R1 (2000)ADSCrossRefGoogle Scholar
  12. 12.
    J. Berakdar and H. Klar: J. Phys. B 26, 4219 (1993)ADSCrossRefGoogle Scholar
  13. 13.
    F. Maulbetsch and J.S. Briggs: J. Phys. B 26, 1679 (1993)ADSCrossRefGoogle Scholar
  14. 14.
    A.S. Kheifets and I. Bray: J. Phys. B 31, 5149 (1998)ADSCrossRefGoogle Scholar
  15. 15.
    A. Dorn, B. Najjari, G. Sakhelashvili, C. Höhr, C.D. Schröter, R. Moshammer, J. Ullrich A. Kheifets, and R.D. DuBois: Photonic and Atomic Collisions, 22. international conference, Santa Fe, July 2001, edited by J. Burgdörfer, J. S. Cohen, S. Daz and C. R. Vane, Rinton press, Princeton 2002, p.423Google Scholar
  16. 16.
    A. Dorn, A. Kheifets, C.D. Schröter, B. Najjari, C. Höhr, R. Moshammer, and J. Ullrich: Phys. Rev. A, 65, 2709 (2002)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • A. Dorn

There are no affiliations available

Personalised recommendations