Skip to main content

Electronic Collisions in Correlated Systems: From the Atomic to the Thermodynamic Limit

  • Chapter
Many-Particle Quantum Dynamics in Atomic and Molecular Fragmentation

Part of the book series: Springer Series on Atomic, Optical, and Plasma Physics ((SSAOPP,volume 35))

  • 447 Accesses

Abstract

This chapter gives a brief overview on recent advances in the treatment of nonrelativistic electronic collisions in finite and extended systemsl. A proper description of electronic collisions [1–4] is a prerequisite for the understanding of a variety of material properties. Emphasis is put on analytical concepts that unravel common features and differences between scattering events in finite few-body (atomic) systems and large, extended systems (molecules, metal clusters, and solid surfaces) . The properties of few-body Coulomb scattering states are discussed for two-, three-, four- and N- particle systems. For large, finite systems the concept of Green’s function is utilized as a powerful tool for the description of electronic excitations as well as for the study of collective and thermodynamic properties. For the description of highly excited electronic states in solids and surfaces, the Green’s function method, developed in field theory, is used. When available, the theoretical models are contrasted with experimental findings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Pines: Phys. Rev. 92, 626 (1953);

    Article  ADS  MATH  Google Scholar 

  2. E. Abrahams: Phys. Rev. 95, 839 (1954);

    Article  ADS  Google Scholar 

  3. D. Pines, P. Nozieres: The Theory of Quantum Liquids (Addison-Wesley, Reading 1966)

    Google Scholar 

  4. A. Gonis: Theoretical Materials Science: Tracing the Electronic Origins of Materials Behavior (Materials research society, Warrendale 2000)

    Google Scholar 

  5. A.L. Fetter, J.D. Walecka: Quantum Theory of Many-particle Systems (McGraw-Hill, New York 1971)

    Google Scholar 

  6. I. Lindgren, J. Morrison: Atomic Many-Body Theory (Springer, Berlin, Heidelberg, New York 1982)

    Book  Google Scholar 

  7. L. Rosenberg: Phys. Rev. D 8, 1833 (1973)

    ADS  Google Scholar 

  8. M. Brauner, J.S. Briggs, H. Klar: J. Phys. B 22, 2265 (1989)

    ADS  Google Scholar 

  9. J.S. Briggs: Phys. Rev. A 41, 539 (1990)

    ADS  Google Scholar 

  10. H. Klar: Z. Phys. D 16, 231 (1990); J. Berakdar: (thesis) University of Freiburg i.Br. (1990) (unpublished)

    ADS  Google Scholar 

  11. E.O. Alt, A.M. Mukhamedzhanov: Phys. Rev. A 47, 2004 (1993);

    MathSciNet  ADS  Google Scholar 

  12. E.O. Alt, M. Lieber: Phys. Rev. 54, 3078 (1996)

    Article  Google Scholar 

  13. J. Berakdar, J.S. Briggs: Phys. Rev. Lett. 72, 3799 (1994);

    Article  ADS  Google Scholar 

  14. J. Berakdar, J.S. Briggs: J. Phys. B 27, 4271 (1994)

    ADS  Google Scholar 

  15. J. Berakdar: Phys. Rev. A 53, 2314 (1996)

    ADS  Google Scholar 

  16. S.D. Kunikeev, V.S. Senashenko: Zh.E’ksp. Teo. Fiz. 109, 1561 (1996);

    Google Scholar 

  17. S.D. Kunikeev, V.S. Senashenko: [Sov. Phys. JETP 82, 839 (1996)];

    ADS  Google Scholar 

  18. S.D. Kunikeev, V.S. Senashenko: Nucl. Instrum. Methods B 154, 252 (1999)

    ADS  Google Scholar 

  19. D.S. Crothers: J. Phys. B 24, L39 (1991)

    Google Scholar 

  20. G. Gasaneo, F.D. Colavecchia, C.R. Garibotti, J.E. Miraglia, P. Macri: Phys. Rev. A 55, 2809 (1997);

    ADS  Google Scholar 

  21. G. Gasaneo, F.D. Colavecchia, C.R. Garibotti: Nucl. Instrum. Methods B 154, 32 (1999)

    ADS  Google Scholar 

  22. J. Berakdar: Phys. Lett. A 220, 237 (1996);

    ADS  Google Scholar 

  23. J. Berakdar: Phys. Lett. 277, 35 (2000);

    Article  Google Scholar 

  24. J. Berakdar: Phys. Rev. A 55, 1994 (1997)

    ADS  Google Scholar 

  25. R.K. Peterkop: Theory of Ionisation of Atoms by the Electron Impact, (Colorado Associated University Press, Boulder 1977)

    Google Scholar 

  26. J. Berakdar: Phys. Rev. Lett. 78, 2712 (1997)

    Article  ADS  Google Scholar 

  27. J. Berakdar: to be published

    Google Scholar 

  28. G.D. Mahan: Many-Particle Physics, second edn (Plenum Press, London 1993)

    Google Scholar 

  29. A.A. Abrikosov, L.P. Korkov, I.E. Dzyaloshinski: Methods of Quantum Field Theory in Statistical Physics (Dover, New York 1975)

    Google Scholar 

  30. J. Berakdar: Aust. J. Phys. 49, 1095 (1996)

    ADS  Google Scholar 

  31. M. Abramowitz, I. Stegun: Pocketbook of Mathematical Functions (Verlag Harri Deutsch, Frankfurt 1984)

    MATH  Google Scholar 

  32. J. Berakdar: Phys. Rev. Lett. 85, 4036 (2000)

    Article  ADS  Google Scholar 

  33. C.N. Yang, T.D. Lee: Phys. Rev. 97, 404 (1952);

    Article  MathSciNet  ADS  Google Scholar 

  34. C.N. Yang, T.D. Lee: Phys. Rev. 87, 410 (1952)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  35. S. Grossmann, W. Rosenhauer: Z. Phys. 207, 138 (1967);

    Article  ADS  Google Scholar 

  36. S. Grossmann, W. Rosenhauer: Z. Phys. 218, 437 (1969)

    Article  ADS  Google Scholar 

  37. M.N. Barber: Finite-size Scaling (Phase Transitions and Critical Phenomena) eds. C. Domb, J.L. Lebowity (Academic Press, New York 1983) pp. 145–266

    Google Scholar 

  38. L. Hedin: J. Phys. C 11, R489 (1999)

    ADS  Google Scholar 

  39. J. Berakdar, O. Kidun, A. Ernst: in Correlations, Polarization, and Ionization in Atomic Systems, eds. D.H. Madison, M. Schulz (AIP, Melville, New York 2002) pp. 64–69

    Google Scholar 

  40. O. Kidun, J. Berakdar: Phys. Rev. Lett. 87, 263–401 (2001)

    Article  Google Scholar 

  41. S. Keller: Eur. Phys. J. D 13, 51 (2001)

    ADS  Google Scholar 

  42. S. Matt, B. Dünser, M. Lezius, K. Becker, A. Stamatovic, P. Scheier, T.D. Märk: J. Chem. Phys. 105, 1880 (1996)

    Article  ADS  Google Scholar 

  43. V. Foltin, M. Foltin, S. Matt, P. Scheier, K. Becker, H. Deutsch, T.D. Märk: Chem. Phys. Lett. 289, 181 (1998)

    Article  ADS  Google Scholar 

  44. S. Keller, E. Engel: Chem. Phys. Lett. 299, 165 (1999)

    Article  ADS  Google Scholar 

  45. K.A. Brueckner: Phys. Rev. 97, 1353 (1955);

    Article  ADS  MATH  Google Scholar 

  46. H.A. Bethe: Ann. Rev. Nucl. Sci. 21, 93 (1971);

    Article  ADS  Google Scholar 

  47. J.P. Jeukenne, A. Legeunne, C. Mahaux: Phys. Rep. 25, 83 (1976)

    Article  ADS  Google Scholar 

  48. A.B. Migdal: Theory of Finite Fermi Systems (Interscience Pub., New York 1967)

    Google Scholar 

  49. P.C. Martin, J. Schwinger: Phys. Rev. 115, 1342 (1959)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  50. H. Lehmann: Nuovo Cimento A 11, 342 (1954)

    Google Scholar 

  51. S.D. Kevan (Ed.): Angle-Resolved Photoemission: Theory and Current Application, (Studies in Surface Science and Catalysis) (Elsevier, Amsterdam 1992)

    Google Scholar 

  52. S. Hüfner: Photoelectron Spectroscopy (Springer Series in Solid-State Science, Vol. 82) (Spinger, Berlin, Heidelberg, New York 1995)

    Book  Google Scholar 

  53. R. Herrmann, S. Samarin, H. Schwabe, J. Kirschner: Phys. Rev. Lett. 81, 2148 (1998);

    Article  ADS  Google Scholar 

  54. R. Herrmann, S. Samarin, H. Schwabe, J. Kirschner: J. Phys. (Paris) IV 9, 127 (1999)

    Google Scholar 

  55. N. Fominykh, J. Henk, J. Berakdar, P. Bruno, H. Gollisch, R. Feder: Solid State Commun. 113, 665 (2000)

    Article  ADS  Google Scholar 

  56. J. Berakdar, H. Gollisch, R. Feder: Solid State Commun. 112, 587 (1999)

    Article  ADS  Google Scholar 

  57. N. Fominykh, J. Henk, J. Berakdar, P. Bruno, H. Gollisch, R. Feder: in Manyparticle Spectroscopy of Atoms, Molecules, Clusters and Surfaces. Eds. J. Berakdar, J. Kirschner, (Kluwer Acad/Plenum Pub., New York 2001)

    Google Scholar 

  58. N. Fominykh, J. Berakdar, J. Henk, P. Bruno: Phys. Rev. Lett. 89, 086402 (2002)

    Article  ADS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Berakdar, J. (2003). Electronic Collisions in Correlated Systems: From the Atomic to the Thermodynamic Limit. In: Ullrich, J., Shevelko, V. (eds) Many-Particle Quantum Dynamics in Atomic and Molecular Fragmentation. Springer Series on Atomic, Optical, and Plasma Physics, vol 35. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-08492-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-08492-2_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05626-0

  • Online ISBN: 978-3-662-08492-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics