Skip to main content

Part of the book series: Springer Series on Atomic, Optical, and Plasma Physics ((SSAOPP,volume 35))

Abstract

Scattering processes leading to excitation or fragmentation of atomic or molecular systems are a source of information on various physical effects associated with the mutual Coulomb interaction of such many-particle systems. This chapter focuses on the discussion of a quantum—mechanical system (the electrons of the target) influenced by a classical environment (the projectile) that provides the energy that disturbs the electronic system [1] . The classical environment can, for instance, be realized by an intense laser field or an ion beam that imposes its time-dependence on the electronic subsystem and defines a typical timescale for the scattering process — femtoseconds for an electronic system exposed to a laser beam and attoseconds for heavy-particle collisions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.S. Briggs and J.M. Rost: Eur. Phys. J. D 10, 311 (2000)

    Article  ADS  Google Scholar 

  2. E.K.U. Gross, J.F. Dobson, and M. Petersilka: Density Functional Theory of Time-Dependent Phenomena. In: Topics in Current Chemistry 181, ed. by R.F. Nalewajski (Springer, Berlin, Heidelberg, New York 1996)

    Google Scholar 

  3. K. Burke and E.K.U. Gross: A Guided Tour of Time-Dependent Density Functional Theory. In: Density Functionals: Theory and Applications, Proceedings of the Tenth Chris Engelbrecht Summer School in Theoretical Physics ed. by D. Joubert (Springer, Berlin, Heidelberg, New York 1997)

    Google Scholar 

  4. N.T. Maitra, K. Burke, H. Appel, E.K.U. Gross, and R. van Leeuwen: Ten Topical Questions in Time-Dependent Density Functional Theory. In: Review in Modern Quantum Chemistry: A Celebration of the Contributions of R. G. Parr ed. by K.D. Sen (World Scientific, Singapore 2001)

    Google Scholar 

  5. R.M. Dreizler and E.K.U. Gross: Density Functional Theory (Springer, Berlin, Heidelberg, New York 1990)

    Book  MATH  Google Scholar 

  6. H.J. Lüdde and R.M. Dreizler: J. Phys. B 18, 107 (1985)

    ADS  Google Scholar 

  7. P.-O. Löwdin: Phys. Rev. 97, 1474 (1955)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. E. Runge and E.K.U. Gross: Phys. Rev. Lett. 52, 997 (1984)

    Article  ADS  Google Scholar 

  9. M. Levy: Phys. Rev. A 26, 1200 (1982);

    ADS  Google Scholar 

  10. E.H. Lieb: Density Functionals for Coulomb Systems. In: Density Functional Methods in Physics ed. by R.M. Dreizler and J. da Providencia (Plenum, New York 1985)

    Google Scholar 

  11. R. van Leeuwen: Int. J. Mod. Phys. B 15, 1969 (2001)

    ADS  Google Scholar 

  12. S.H. Vosko, L. Wilk, and M. Nusair: Can. J. Phys. 58, 1200 (1980);

    Article  ADS  Google Scholar 

  13. J.P. Perdew and Y. Wang: Phys. Rev. B 45, 13244 (1992)

    ADS  Google Scholar 

  14. R. Latter: Phys. Rev. 99, 510 (1955);

    Article  ADS  Google Scholar 

  15. J.P. Perdew: Chem. Phys. Lett. 64, 127 (1979);

    Article  ADS  Google Scholar 

  16. J.P. Perdew and A. Zunger: Phys. Rev. B 23, 5048 (1981)

    ADS  Google Scholar 

  17. J.D. Talman and W.F. Shadwick: Phys. Rev. A 14, 36 (1976)

    ADS  Google Scholar 

  18. E. Engel and R.M. Dreizler: J. Comp. Chem. 20, 31 (1999)

    Article  Google Scholar 

  19. A. Facco Bonetti, E. Engel, R.N. Schmid, and R.M. Dreizler: Phys. Rev. Lett. 86, 2241 (2001)

    Article  ADS  Google Scholar 

  20. K.C. Kulander (editor): Thematic Issue on Time-Dependent Methods for Quantum Dynamics Comp. Phys. Commmun. 63, No: 1–3 (1991);

    Google Scholar 

  21. T. Kirchner, H.J. Lüdde, O.J. Kroneisen, and R.M. Dreizler: Nucl. Instrum. Methods B 154, 46 (1999)

    ADS  Google Scholar 

  22. D.R. Schultz, M.R. Strayer, and J.C. Wells: Phys. Rev. Lett. 82, 3976 (1999)

    Article  ADS  Google Scholar 

  23. D.C. Ionescu and A. Belkacem: Phys. Scr. T80, 128 (1999)

    Article  ADS  Google Scholar 

  24. M. Chassid and M. Horbatsch: J. Phys. B 31, 515 (1998);

    ADS  Google Scholar 

  25. M. Chassid and M. Horbatsch: Phys. Rev. A 66, 012714 (2002);

    ADS  Google Scholar 

  26. A. Kolakowska, M. Pindzola, F. Robicheaux, D.R. Schultz, and J.C. Wells: Phys. Rev. A 58, 2872 (1998);

    ADS  Google Scholar 

  27. A. Kolakowska, M. Pindzola, and D.R. Schultz: Phys. Rev. A 59, 3588 (1999)

    ADS  Google Scholar 

  28. B. Pons, Phys. Rev. A 63, 012704 (2001);

    ADS  Google Scholar 

  29. B. Pons, Phys. Rev. A 64, 019904 (2001);

    ADS  Google Scholar 

  30. K. Sakimoto, J. Phys. B 33, 5165 (2000);

    ADS  Google Scholar 

  31. A. Igarashi, S. Nakazaki, and A. Ohsaki: Phys. Rev. A 61, 062712 (2000);

    ADS  Google Scholar 

  32. X.M. Tong, D. Kato, T. Watanabe, and S. Ohtani: Phys. Rev. A 62, 052701 (2000)

    ADS  Google Scholar 

  33. J. Fu, M.J. Fitzpatrick, J.F. Reading, and R. Gayet: J. Phys. B 34, 15 (2001);

    ADS  Google Scholar 

  34. E.Y. Sidky, C. Illescas, and C.D. Lin: Phys. Rev. Lett. 85, 1634 (2000);

    Article  ADS  Google Scholar 

  35. N. Toshima: Phys. Rev. A 59, 1981 (1999)

    ADS  Google Scholar 

  36. E.A. Solov’ev: Sov. Phys. Usp. 32, 228 (1989);

    Article  ADS  Google Scholar 

  37. M. Pieksma and S.Y. Ovchinnikov: J. Phys. B 27, 4573 (1994)

    ADS  Google Scholar 

  38. C.L. Cocke and R.E. Olson: Phys. Rep. 205, 163 (1991);

    Article  ADS  Google Scholar 

  39. M. Horbatsch: Phys. Rev. A 49, 4556 (1994);

    ADS  Google Scholar 

  40. C. Illescas and A. Riera: Phys. Rev. A 60, 4546 (1999)

    ADS  Google Scholar 

  41. H.J. Lüdde, A. Henne, T. Kirchner, and R.M. Dreizler: J. Phys. B 29, 4423 (1996)

    ADS  Google Scholar 

  42. O.J. Kroneisen, H.J. Lüdde, T. Kirchner, and R.M. Dreizler: J. Phys. A 32, 2141 (1999)

    ADS  Google Scholar 

  43. T. Kirchner, L. Gulyás, H.J. Lüdde, A. Henne, E. Engel, R.M. Dreizler: Phys. Rev. Lett. 79, 1658 (1997)

    Article  ADS  Google Scholar 

  44. O.J. Kroneisen, A. Achenbach, H.J. Lüdde, and R.M. Dreizler: Model Potential Approach to Collisions Between Ions and Molecular Hydrogen. In: XXII International Conference on Photonic, Electronic, and Atomic Collisions. Abstracts of Contributed Papers ed. by S. Datz, M.E. Bannister, H.F. Krause, L.H. Saddiq, D. Schultz, and C.R. Vane (Rinton Press Princeton 2001)

    Google Scholar 

  45. T. Kirchner: Phys. Rev. Lett. 89, 093203 (2002)

    Article  ADS  Google Scholar 

  46. P. Hessler, J. Park, and K. Burke: Phys. Rev. Lett. 82, 378 (1999)

    Article  ADS  Google Scholar 

  47. H.J. Lüdde and R.M. Dreizler: J. Phys. B 16, 3973 (1983)

    ADS  Google Scholar 

  48. P. Kürpick, H.J. Lüdde, W.D. Sepp, and B. Fricke: Z. Phys. D 25, 17 (1992);

    Article  ADS  Google Scholar 

  49. H.J. Lüdde, A. Macias, F. Martin, A. Riera, and J.L. Sanz: J. Phys. B 28, 4101 (1995)

    ADS  Google Scholar 

  50. W. Becker and M.V. Fedorov (editors): Focus Issue on Laser-Induced Multiple Ionization Opt. Express. 8, No. 7 (2001)

    Google Scholar 

  51. M. Petersilka and E.K.U. Gross: Laser Phys. 9, 105 (1999);

    Google Scholar 

  52. M. Lein, E.K.U. Gross, and V. Engel: Phys. Rev. Lett. 85, 4707 (2000);

    Article  ADS  Google Scholar 

  53. M. Lein, E.K.U. Gross, and V. Engel: J. Phys. B 33, 433 (2000);

    ADS  Google Scholar 

  54. M. Lein, E.K.U. Gross, and V. Engel: Phys. Rev. A 64, 023406 (2001);

    ADS  Google Scholar 

  55. M. Lein, V. Engel, and E.K.U. Gross: Opt. Express 8, 411 (2001)

    Article  ADS  Google Scholar 

  56. D.G. Lappas and R. van Leeuwen: J. Phys. B 31, L249 (1998)

    ADS  Google Scholar 

  57. J. Ullrich, R. Moshammer, R. Dörner, O. Jagutzki, V. Mergel, H. SchmidtBöcking, and L. Spielberger: J. Phys. B 30, 2917 (1997);

    ADS  Google Scholar 

  58. R. Dörner, V. Mergel, O. Jagutzki, L. Spielberger, J. Ullrich, R. Moshammer, and H. SchmidtBöcking: Phys. Rep. 330, 95 (2000)

    Article  ADS  Google Scholar 

  59. H.J. Lüdde, T. Kirchner, and M. Horbatsch: In: Quantum Mechanical Treatment of Ion Collisions with Many-Electron Atoms. In: XXII International Conference on Photonic, Electronic, and Atomic Collisions. Invited Papers ed. by J. Burgdörfer, J. Cohen, S. Datz, and C.R. Vane (Rinton Press, Princeton 2002) p. 708

    Google Scholar 

  60. T. Kirchner, L. Gulyás, H.J. Lüdde, E. Engel, and R.M. Dreizler: Phys. Rev. A 58, 2063 (1998)

    ADS  Google Scholar 

  61. L. Gulyás, T. Kirchner, T. Shirai, and M. Horbatsch: Phys. Rev. A 62, 022702 (2000)

    ADS  Google Scholar 

  62. T. Kirchner, M. Horbatsch, H.J. Lüdde, and R.M. Dreizler: Phys. Rev. A 62, 042704 (2000)

    Google Scholar 

  63. T. Kirchner, M. Horbatsch, and H.J. Lüdde: Phys. Rev. A 64, 012711 (2001)

    ADS  Google Scholar 

  64. F. Calvayrac, P.G. Reinhard, E. Suraud, and C. Ullrich: Phys. Rep. A 337, 493 (2000)

    Article  ADS  Google Scholar 

  65. U. Saalmann and R. Schmidt: Z. Phys. D 38, 153 (1996)

    Article  ADS  Google Scholar 

  66. O. Knospe, J. Jellinek, U. Saalmann, and R. Schmidt: Eur. Phys. J. D 5, 1 (1999);

    ADS  Google Scholar 

  67. O. Knospe, J. Jellinek, U. Saalmann, and R. Schmidt: Phys. Rev. A 61, 022715 (1999);

    ADS  Google Scholar 

  68. Z. Roller-Lutz, Y. Wang, H.O. Lutz, U. Saalmann, and R. Schmidt: Phys. Rev. A 59, R2555 (1999)

    ADS  Google Scholar 

  69. U. Saalmann and R. Schmidt: Phys. Rev. Lett. 80, 3213 (1998);

    Article  ADS  Google Scholar 

  70. T. Kunert and R. Schmidt: Phys. Rev. Lett. 86, 5258 (2001)

    Article  ADS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lüdde, H.J. (2003). Time-Dependent Density Functional Theory in Atomic Collisions. In: Ullrich, J., Shevelko, V. (eds) Many-Particle Quantum Dynamics in Atomic and Molecular Fragmentation. Springer Series on Atomic, Optical, and Plasma Physics, vol 35. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-08492-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-08492-2_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05626-0

  • Online ISBN: 978-3-662-08492-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics