Advertisement

Bildgebende Verfahren: Früherkennung und Diagnostik

  • A. Rieber
  • H.-J. Brambs
  • C. G. Diederichs
  • R. Kreienberg
Part of the Onkologie Aktuell book series (ONKAKTUELL)

Zusammenfassung

Die Tatsache, dass Mammakarzinome mit Hilfe der Screening-Mammographie früher diagnostiziert werden können und dadurch auch prinzipiell die Überlebensrate verbessert werden kann (erwiesenermaßen diejenige der Patientinnen über 50 Jahre), ist allgemein akzeptiert (Andersson et al. 1988; Baker 1982; Roberts et al. 1990; Rodes et al. 1986; Rutquist et al. 1990; Seidman et al. 1987; Shapiro et al. 1982; Tabar et al. 1985,1992; Verbeek et al. 1984). Die Hauptziele der Mammadiagnostik sind vor allem die Früherkennung des Mammakarzinoms und die Differenzierung von gutartigen Läsionen. Bislang gilt die Mammographie als das einzige zuverlässige Screening-Verfahren in diesem Bereich. Für die weitere Differenzierung von mammographisch oder klinisch suspekten Veränderungen werden üblicherweise der Ultraschall und die transkutane Biopsie eingesetzt.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Adler LP, Faulhaber PF, Schnur KC, Al-Kasi NL, Shenk RR (1997) Axillary lymh node metastases: screening with [F-18]2-deoxy-2-fluoro-D-glucose (FDG) PET. Radiology 203 (2): 223–227Google Scholar
  2. Allgayer B, Lukas P, Loos W, Sommerhoff KB (1993) MRT der Mamma mit 2D-Spinecho und Gradientenecho-Sequenzen indiagnostischen Problemfällen. Fortschr Röntgenstr 158: 423–427CrossRefGoogle Scholar
  3. American College of Radiology (1984) College policy reviews use of thermography. Am Coll Radiol Bull 40:13–15Google Scholar
  4. Andersson I, Aspegren K, Janzon L et al. (1988) Mammographie screening and mortality from breast cancer: the Malmö mammographic screening trial. Br Med J 297: 943–948CrossRefGoogle Scholar
  5. Avril N, Dose J, Jänicke F et al. (1996) Metabolie characterization of breast tumors with positron emission tomography using F-18-fluorodeoxyglucose. J Clin Oncology 14: 1848–1857Google Scholar
  6. Baker LH (1982) Breast Cancer Detection Project: five-year summary report. CA Cancer J Clin 32:194–225PubMedCrossRefGoogle Scholar
  7. Barton MB, Harris R, Fletcher SW (1999) Does this patient have breast cancer? The screening clinical breast examination: should it be done? How? Jama 282:1270–1280PubMedCrossRefGoogle Scholar
  8. Bassett LW, Kimme-Smith C, Sutherland LK et al.(1987) Automated and hand-held breast US: Effect on patient management. Radiology 165:103PubMedGoogle Scholar
  9. Baum JK, Khalkhali I, Villanueva-Meyer J, Schnitt S, Houlihan MJ, Haber SB (1996) Diagnostic accuracy of Tc-99 m Sesta-mibi breast imaging in the mammographically dense breast. Radiology 201 (P): 177Google Scholar
  10. Berghammer P, Obwegeser R, Mulauer-Ertl S et al. (1999) 99m-Tc-tetrofosmin scintigraphy and breast cancer. Gynecol Oncol 73: 87–90PubMedCrossRefGoogle Scholar
  11. Bird RE, Mc Lelland R (1986) How to initiate and operate a low-cost screening mammography center. Radiology 161: 43–47PubMedGoogle Scholar
  12. Bird RE, Wallace TW, Yankaskas BC (1992) Analysis of cancers missed at screening mammography. Radiology 184: 613–617PubMedGoogle Scholar
  13. Bongers V, Borel-Rinkes IH, Sie-Go DM, Pijnappel R, de Hooge P, van Rijk PP (1999) Detection of malignant breast tumours in dense beast tissue: results of 99mTc-tetrofosmin scintimam-mography related to surgery. Eur J Surg Oncol 25:152–156PubMedCrossRefGoogle Scholar
  14. Brem RF, Behrndt VS, Sanow L, Gatewood OMB (1999) Atypical ductal hyperplasia: histologic underestimation of carcinoma in tissue harvested from impalpable breast lesions using 11-Gauge stereotactically guided directional vacuum-assisted biopsy. Am J Roentgenol 172:1405–1407CrossRefGoogle Scholar
  15. Brenner J, Fajardo L, Fisher PR et al. (1996) Percutaneous core biopsy of the breast: Effect of operator experience and number of samples on diagnostic accuracy. Am J Röntgenol 166:341–346CrossRefGoogle Scholar
  16. Brown LF, Berse B, Jackmann RW, Tognazzi K, Manseau J, Sen-ger DR, Dvorak HF (1993) Expression of vascular permeability factor (vascular endothelial growth factor) and its receptors in adenocarcinomas of the gatrointestinal tract. Cancer Research 53: 4727–4735PubMedGoogle Scholar
  17. Carlson KL, Helvie MA, Roubidoux MA et al.(1999) Relationship between mammographie screening intervals and size and histology of ductal carcinoma in situ. Am J Roentgenol 172:313–317CrossRefGoogle Scholar
  18. Chang CH, Sibala JL, Fritz SL, Dwyer SJ (1979) Specific value of computed tomographic breast scanner (CT/M) in diagnosis of breast disease. Radiology 132: 647–652PubMedGoogle Scholar
  19. Choucair R, Holcomb M, Matthews R et al.(1988) Biopsy of non-palpable breast lesions. Am J Surg 156:453–456PubMedCrossRefGoogle Scholar
  20. Cole-Beuglet C, Goldberg BB, Kurtz AB, Patchefsky AS, Shaber GS, Rubin CS (1981) Ultrasound mammography: a comparison with radiographic mammography. Radiology 139: 693–698PubMedGoogle Scholar
  21. Cole-Beuglet C, Goldberg BB, Kurtz AB, Patchefsky AS, Shaber GS, Rubin CS (1982) Clinical experience with a prototype real-time dedicated breast scanner. Am J Roentgenol 139: 905–911CrossRefGoogle Scholar
  22. Cole-Beuglet C, Soriano RZ, Kurtz AB et al.(1983) Ultrasound analysis of 104 primary breast carcinomas classified according to histopathologic type. Radiology 147:191–196PubMedGoogle Scholar
  23. Croll J, Kotevivch J, Tabrett M (1982) The diagnosis of benign disease and the exclusion of malignancy in patients with breast symptoms. Semin US 3:38Google Scholar
  24. Dean KI, Komu M (1994) Breast tumor imaging with ultra low field. MRI. Magn Res Imaging 12:395–401CrossRefGoogle Scholar
  25. Deland FH (1969) A modified technique of ultrasonography for the detection and differential diagnosis of breast lesions. Am J Roentgenol 105: 446–452CrossRefGoogle Scholar
  26. Delorme S (1993) Dopplersonographie des Mammakarzinoms. Radiologe 33: 287–290PubMedGoogle Scholar
  27. Dempsey PJ (1988) The importance of resolution in the clinical application of breast sonography. Ultrasound Med Biol 14 (Suppl 1): 43PubMedCrossRefGoogle Scholar
  28. Dershaw DD (1995) Evaluation of the breast undergoing lumpectomy and radiation therapy. Radiol Clin North Am 33: 1147–1160PubMedGoogle Scholar
  29. Diaz LK, Wiley EL, Venta LA (1999) Are malignant cells displaced by large-gauge needle core biopsy of the breast? Am J Roentgenol 173:1303–1313CrossRefGoogle Scholar
  30. Eary JF, Mankoff DA, Dunnwald LK et al. (1999) Sentinel lymph node mapping for breast cancer: analysis in a diverse patient group. Radiology 213:526–529PubMedGoogle Scholar
  31. Egan RL, Egan KL (1984a) Automated water-path full-breast sonography: Correlation with histology in 176 solid lesions. Am J Roentgenol 143:499–507CrossRefGoogle Scholar
  32. Egan RL, Egan KL (1984b) Detection of breast carcinoma: Comparison of automated water-path whole-breast sonography, mammography, and physical examination. Am J Roentgenol 143:493–497CrossRefGoogle Scholar
  33. Feig SA (1989) The role of ultrasound in a breast imaging center. Semin Ultrasound CT MR 10:90–105PubMedGoogle Scholar
  34. Fischer U, Kopkas L, Grabbe E (1999) Breast Carcinoma: Effect of preoperative contrast-enhanced MR Imaging on the therapeutic approach. Radiology 213: 881–888PubMedGoogle Scholar
  35. Fischer U, von Heyden D, Vosshenrich R, Vieweg I, Grabbe E (1993) Signalverhalten maligner und benigner Läsionen in der dynamischen 2D-MRT der Mamma. Fortschr Röntgenstr 158: 287–292CrossRefGoogle Scholar
  36. Fischer U, Vosshenrich R, Probst A, Burchhardt H, Grabbe E (1994) Präoperative MR-Mammographie bei bekanntem Mammakarzinom. Sinnvolle Mehrinformation oder sinnloser Mehraufwand ? Fortschr Röntgenstr 161:300–306CrossRefGoogle Scholar
  37. Fischer U, Westerhof JP, Brinck U, Korabiowska M, Schauer A, Grabbe F (1996) Das duktale In-situ-Karzinom in der dynamischen MR-Mammographie bei 1,5 T. Fortschr Röntgenstr 164: 290–294CrossRefGoogle Scholar
  38. Fishman AJ (1996) Positron emission tomography in the clinical evaluation of metastatic cancer. J Clin Oncology 14:691–696Google Scholar
  39. Fletcher SW (1995) Why question screening mammography for women in their forties ? Radiol Clin North Am 33:1259–1271PubMedGoogle Scholar
  40. Fletcher BD, Hanna SL, Fairclough DL, Gronemeyer SA (1992) Pediatric muculoskeletal tumors: use of dynamic-contrast-enhanced MR imaging to monitor response to chemotherapy. Radiology 184: 243–248PubMedGoogle Scholar
  41. Flickinger FW, Allison JD, Sherry RM, Wright JC (1993) Differentiation of benign from malignant breast masses by timeintensity evaluation of contrast enhanced MRI. Magn Res Imaging 11: 617–620CrossRefGoogle Scholar
  42. Folkman L, Meerler E, Abernathy C (1971) Isolation of a tumor factor responsible for angiogenesis. J Exp Med 33: 275–288CrossRefGoogle Scholar
  43. Fung HM, Jackson FI (1990) Clinically and mammographically occult breast lesions demonstrated by ultrasound. J R Soc Med 83: 696–698PubMedGoogle Scholar
  44. Gerhardt P (1995) Empfehlungen des Ausschusses Magnetresonanztomographie für Qualitätsanforderungen der MRT der Mamma. Jahresbericht der Deutschen Röntgengesell-schaft 43:59–61Google Scholar
  45. Gilles R, Guinebretière JM, Lucidarme O (1994) Nonpalpable breast tumors: diagnosis with contrast-enhanced subtraction dynamic MR imaging. Radiology 191:625–631PubMedGoogle Scholar
  46. Gisvold JJ, Brown LR, Swee RG (1986) Comparison of mammography and transillumination light scanning in the detection of breast lesions. Am J Roentgenol 147:191–194CrossRefGoogle Scholar
  47. Giuseppetti GM, Rizzatto G, Gozzi G et al.(1989) Ruolo dell’ec-tomografia nella diagnosi del carcinoma infraclinico della mammella. Radiol Med 78:339–342PubMedGoogle Scholar
  48. Gribbestad IS, Nilsen G, Fjosne HE, Kvinnsland S, Haugen OA, Rinck PA (1994) Comparative signal intensity measurements in dynamic gadolinium-enhanced MR mammography. J Magn Reson Imaging 4: 477–480PubMedCrossRefGoogle Scholar
  49. Guideline to clinical preventive services: Report of the U.S. Preventive Services Task Force (1989) Washington, Department of Health and Human ServicesGoogle Scholar
  50. Gutowski TD, Fisher SJ, Moon S, Wahl RL (1992) Experimental studies of 18F-2-fluoro-2-d-glucose (FDG) in infection and in reactive lymphnodes. J Nucl Med 32:1548–1555Google Scholar
  51. Haffty BG, Lee C, Philpotts L, Horvath L, Ward B, McKhann C, Tocino I (1998) Prognostic significance of mammographic detection in a cohort of conservatively treated breast cancer patients. Cancer J Sci Am 4: 35–40PubMedGoogle Scholar
  52. Hall FM, Storella JM, Silverstone DZ, Wyshak G (1988) Nonpalpable breast lesions: recommendations for biopsy based on suspicion of carcinoma at mammography. Radiology 167: 353–358PubMedGoogle Scholar
  53. Haran EF, Margalit R, Grobgeld D, Degani H (1995) Angiogenesis in breast cancer visualized by dynamic contrast enhanced MRI and histochemistry. Syllabus SMR Washington, Workshop in breast MRGoogle Scholar
  54. Harms SE, Flamig DP (1993) MR imaging of the breast. J Magn Reson Imaging 3: 277–283PubMedCrossRefGoogle Scholar
  55. Harper AP, Kelly-Fry E, Noe S (1981) Ultrasound breast imaging — the method of choice for examining the young patient. Ultrasound Med Biol 7:231–237PubMedCrossRefGoogle Scholar
  56. Hendrick RE, Botsco M, Plott CM (1995) Quality control in mammography. Radiol Clin North Am. 33:1041–1058PubMedGoogle Scholar
  57. Heywang SH, Hahn D, Schmidt H, Krischke I, Eiermann W, Bas-sermann R, Lissner J (1986) MR imaging of the breast using Gd-DTPA. J Comput Assist Tomogr 10:199–204PubMedCrossRefGoogle Scholar
  58. Heywang-Köbrunner SH (1990) Contrast enhanced MRI of the breast. HD Med Information. Berlin: ScheringGoogle Scholar
  59. Heywang-Köbrunner SH (1994) Contrast-enhanced magnetic resonance imaging of the breast. Invest Radiol 29:94–104PubMedCrossRefGoogle Scholar
  60. Hickman PF, Moore NR, Shepstone BJ (1994) The indeterminate breast mass: assessment using contrast enhanced magnetic resonance imaging. Br J Radiol 67:14–20PubMedCrossRefGoogle Scholar
  61. Hilton SVW, Leopold GR, Olson LK et al.(1986) Real-time breast sonography: Application in 300 consecutive patients. Am J Roentgenol 147:479CrossRefGoogle Scholar
  62. Houn F, Elliott ML, Mc Crohan JL (1995) The mammography quality standards act of 1992: History and philosophy. Radiol Clin North Am 33:1059–1066PubMedGoogle Scholar
  63. Huber S, Helbich T, Kettenbach J, Dock W, Zuna I, Delorme S (1998) Effects of a microbubble contrast agent on breast tumors: computer-assisted quantitative assessment with color coppler US — early experience. Radiology 208: 485–489PubMedGoogle Scholar
  64. Hunt KA, Rosen EL, Sickles EA (1999) Outcome analysis for women undergoing annual versus biennial screening mammography: a review of 24,211 examinations. Am J Roentgenol 173: 285–289CrossRefGoogle Scholar
  65. Isaacs GI, Rozner L, Fox JW (1985) Breast lumps after reduction mammography. Ann Plast Surg 15:394–399PubMedCrossRefGoogle Scholar
  66. Jackman RJ, Nowels KW, Rodriguez-Soto J, Marzoni FA Jr, Fin-kelstein SI, Shepard MJ (1999) Stereotactic, automated, large-core needle biopsy of nonpalpable breast lesions: falsenegative and histologic underestimation rates after long-term follow up. Radiology 210:799–805PubMedGoogle Scholar
  67. Jackson VP (1990) The role of US in breast imaging. Radiology 177:305–311PubMedGoogle Scholar
  68. Jellins J, Kossoff G, Buddee FW, Reeve TS (1971) Ultrasonic visualization of the breast. Med J Aust 1:305–307PubMedGoogle Scholar
  69. Jellins J, Kossoff G, Reeve TS (1977) Detection and classification of liquid-filled masses in the breast by gray scale echography. Radiology 125: 205–212PubMedGoogle Scholar
  70. Jellins J., Kossof G, Reeve TS, Barraclough BH (1975) Ultrasonic grey scale visualization of breast disease. Ultrasound Med Biol 1:393–404PubMedCrossRefGoogle Scholar
  71. Jellins J, Reeve TS, Croll J et al.(1982) Results of breast echographic examinations in Syndey, Australia, 1972–1979. Semin US 3:58Google Scholar
  72. Kaiser (1993) MR-Mammographie. Radiologe 33: 292–298PubMedGoogle Scholar
  73. Kaiser WA, Zeitler E (1989) MR-imaging of the breast: fast imaging sequences with and without Gd-DTPA. Preliminary observations. Radiology 170: 681–686PubMedGoogle Scholar
  74. Kelly-Fry E (1980) Breast imaging. In: Sabbagha RE (Ed) Diagnostic ultrasound applied to obstetrics and gynecology. New York: Harper & Row: 327–350Google Scholar
  75. Kessler LG, Feur EJ, Brown ML (1991) Projection of the breast cancer burden to US women: 1990–2000. Prev Med 20: 170–181PubMedCrossRefGoogle Scholar
  76. Khaleghian R (1993) Breast cysts: Pitfalls in sonographic diagnosis. Australasian Radiol 37:192–194CrossRefGoogle Scholar
  77. Kobayashi T (1979) Diagnostic ultrasound in breast cancer: analysis of retrotumorous echo patterns correlated with sonic attenuation by cancerous connective tissue. JCU 7:471–479PubMedGoogle Scholar
  78. Kobayashi T, Kobayashi T, Taktani O, Hattori N, Kimura K (1974) Differential diagnosis of breast tumors: the sensitivity graded method of ultrasonography. Cancer 33:940–951PubMedCrossRefGoogle Scholar
  79. Kopans DB (1995) Mammography screening and the controversy concerning women aged 40 to 49. Radiol Clin North Am 33:1273–1290PubMedGoogle Scholar
  80. Kopans DB (1996) Imaging analysis of breast lesions. In: Harris JR, Lippman ME, Morrow M., Hellman S: Diseases of the breast. Philadelphia, New York: Lippincott-Raven: 71–83Google Scholar
  81. Kopans DB, Meyer JE, Lindfors KK (1985) Whole-breast US imaging: Four-year follow-up. Radiology 157:505–507PubMedGoogle Scholar
  82. LaRaja RD, Saber AA, Sickles A (1999) Early experience in the use of the advanced breast biopsy instrumentation: a report of one hundred twenty-seven patients. Surgery 125:380–384PubMedCrossRefGoogle Scholar
  83. Larson SM, Weiden PL, Grunbaum Z et al. (1981) Positron imaging feasibility studies. II. Characteristic of deoxygluco-se uptake in reodent and canine neoplasms: concise communication. J Nucl Med 15: 61–66Google Scholar
  84. Lee CH, Philpotts LE, Horvath LJ, Tocino I (1999) Follow-up of breast lesions diagnosed as benign with stereotactic coreneedle biopsy: frequency of mammographic change and false negative rate. Radiology 212:189–194PubMedGoogle Scholar
  85. Lee JK, Kao CH, Sun SS (1999) Technetium-99 m methylene diphosphonate scintimammography for evaluation of palpable breast masses. Oncol Rep 6: 659–663PubMedGoogle Scholar
  86. Leibman AJ, Frager D, Choi P (1999) Experience with breast biopsies using the advanced breast biopsy instrumentation system. Am J Roentgenol 172:1409–1412CrossRefGoogle Scholar
  87. Liberman L, Cody III HS, Hill ADK et al.(1999a) Sentinel lymph node biopsy after percutaneous diagnosis of nonpalpable breast cancer. Radiology 211: 835–844PubMedGoogle Scholar
  88. Liberman L, Vulo M, Dershaw DD et al. (1999b) Epithelial displacement after stereotactic 11-Gauge directional vacuumassisted breast biopsy. Am J Roentgenol 172: 677–681CrossRefGoogle Scholar
  89. Liberman L, Zakowski MF, Avery S et al. (1999c) Complete percutaneous excision of infiltrating carcinoma at stereotactic breast biopsy: how can tumor size be assessed? Am J Roentgenol 173:1315–1322CrossRefGoogle Scholar
  90. Lidbrink A, Elfving J, Frisell J, Jonsson E (1996) Neglected aspects of false positive findings of mammography in breast cancer screening: analysis of false positive cases from the Stockholm trial. Br Med J 312: 273–276CrossRefGoogle Scholar
  91. Lochmüller H, Baumgärtner M, Kessler M (1986) Radiologische Methoden in Gynäkologie und Geburtshilfe. In: Liss-ner J: Radiologie IL Stuttgart: Ferdinand Enke Verlag: 451–472Google Scholar
  92. Madjar H, Münch S, Sauerbrei W, Bauer M, Schillinger H (1990) Differenzierte Mammadiagnostik durch CW-Doppler-Ul-traschall. Radiologie 30:193–197Google Scholar
  93. Matthews BD, Williams GB (1999) Initial experience with the advanced breast biopsy instrumentation system. Am J Surg 177:97–101PubMedCrossRefGoogle Scholar
  94. Meyer JE, Kopans DB, Stomper PC (1984) Occult breast abnormalities: Percutaneous preoperative needle localization. Radiology 150:335–340PubMedGoogle Scholar
  95. Michaelson JS, Halpern E, Kopans DB (1999) Breast cancer: computer simulation method for estimating optimal intervals for screening. Radiology 212:551–560PubMedGoogle Scholar
  96. Mondai A, Sharma R, Chakravarty KL et al.(1999) Delayed Tc-99 m citrate scintigraphy in the evaluation of palpable breast masses. Clin Nucl Med 24:309–313CrossRefGoogle Scholar
  97. Monsees B, Destouet JM, Gersell D (1988) Light scanning of nonpalpable breast lesions: Reevaluation. Radiology 167: 352PubMedGoogle Scholar
  98. Ney FG, Feist JN, Altemus LR (1972) Characteristic angiographic criteria of malignancy. Radiology 104:567–570PubMedGoogle Scholar
  99. Nitzsche EU, Hoh CK, Dalbohm M, Glaspy A, Phelps ME, Moser EA (1993) Ganzkörper-Positronen-Emissions-Tomographie beim Mammakarzinom. Fortschr Röntgenstr 158: 293–298CrossRefGoogle Scholar
  100. Öllinger H, Heins S, Sander B, Schönegg W, Flesch U, Meissner R, Felix R (1993) Gd-DTPA enhanced MRI of the breast: the most sensitive method for detecting multicentric carcinomas in female breast? Eur Radiol 3: 223–226CrossRefGoogle Scholar
  101. Rebner M, Chesbrough R, Gregory N (1999) Initial experience with the advanced breast biopsy instrumentation device. Am J Roentgenol 173: 221–226CrossRefGoogle Scholar
  102. Reuter K, dòrsi CJ, Reale F (1984) Intracystic carcinoma of the breast: the role of ultrasonography. Radiology 153: 233–234PubMedGoogle Scholar
  103. Rieber A, Niissle K, Merkle E, Kreienberg R, Tomczak R, Brambs H-J (1999) MR-Mammography: Influence of menstrual cycle on the dynamic contrast enhancement of fibrocystic disease. Eur Radiol 9:1107–1112PubMedCrossRefGoogle Scholar
  104. Rieber A, Tomczak R, Mergo P, Wenzel V, Zeitler H, Brambs H-J (1997) Magnetic resonance mammography in the differential diagnosis of mastitis versus inflammatory carcinoma. J Comput Assist Tomog 21:128–132CrossRefGoogle Scholar
  105. Rieber A, Tomczak R, Rosenthal H, Görich J, Kreienberg R, Brambs H-J (1997) Magnetic resonance imaging of the breast: changes in sensitivity during neoadjuvant chemotherapy. Br J Radiol 70: 452–458PubMedGoogle Scholar
  106. Roberts MM, Alexander FE, Anderson TJ et al. (1990) Edinburgh trial of screening for breast cancer: mortality at seven years. Lancet 335: 241–246PubMedCrossRefGoogle Scholar
  107. Rodes N, Lopez M, Pearson D (1986) The impact of breast cancer screening on survival: a 5-to 10-year follow-up study. Cancer 57:581–585PubMedCrossRefGoogle Scholar
  108. Rosenquist CJ, Lindfors KK (1994) Screening mammography in women aged 40–40 years: analysis of costeffectiveness. Radiology 191:647–650PubMedGoogle Scholar
  109. Rostom AY, Powe J, Kandil A et al.(1999) Positon emission tomography in breast cancer: a clincopathological correlation of results. Br J Radiol 72:1064–1068PubMedGoogle Scholar
  110. Rutquist LE, Miller AB, Andersson I, Hakama M, Hakulinen T, Sigfusson BT, Tabar L (1990) Reduced breast cancer mortality with mammography screening: an assessment of currently available data. Int J Cancer S5:76–84CrossRefGoogle Scholar
  111. Samuels JR, Haffty BG, Lee CH, Fischer DB (1992) Breast conservation therapy in patients with mammographically undetected breast cancer. Radiology 185:425–427PubMedGoogle Scholar
  112. Schillaci O, Danieli R, Scopinaro F (1999) Role of Tc-99 m Tetrofosmin imaging in the examination of patients with breast lesions. Radiology 220: 284–285Google Scholar
  113. Schleicher UM (1995) Entdeckung des Mammakarzinoms — Statistisch-epidemiologische Untersuchung zum derzeitigen Stand. Fortschr Roentgenstr 163: 469–473CrossRefGoogle Scholar
  114. Schoenberger SG, Sutherland CM, Robinson AE (1988) Breast neoplasms: duplex sonographic imaging as an adjunct in diagnosis. Radiology 168: 665–668PubMedGoogle Scholar
  115. Schröder R-J, Hadijuana J, Hidajat N et al. (1998) Farbkodierte signalverstärkte Duplexsonographie raumfordernder intramammärer Prozesse. Fortschr Röntgenstr 168:444–450CrossRefGoogle Scholar
  116. Seidman H, Gelb SK, Silverberg E, La Verda N, Lubera J (1987) A survival experience in the breast cancer detection demonstration project. CA Cancer J Clin 37: 258–290PubMedCrossRefGoogle Scholar
  117. Sener SF, Winchester DJ, Winchester DP et al.(1999) Spectrum of mammographically detected breast cancers. Am Surg Aug 65:731–735Google Scholar
  118. Shapiro S, Venet W, Strax P (1982) Ten-to forteen-year effect of screening on breast cancer mortality. J Natl Cancer Instit 69: 349–355Google Scholar
  119. Shweiki D, Itin A, Soffer D, Keshet E (1992) Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-in-itiated angiogenesis. Nature 359: 843–845PubMedCrossRefGoogle Scholar
  120. Sickles EA, Filly RA, Callen PW (1983) Breast cancer detection with sonography and mammography: Comparison using state-of-the-art equipment. Am J Roentenol 140: 843–845CrossRefGoogle Scholar
  121. Sickles EA, Filly RA, Callen PW (1984) Benign breast lesions: Ultrasound detection and diagnosis. Radiology 151:467–470PubMedGoogle Scholar
  122. Sickles EA, Ominsky SH, Solitto RA, Galvin HB, Monticciolo DL (1990) Medical audit of a rapid-throughput mammography screening practice: methodology and results of 27.114 examinations. Radiology 175:323–327PubMedGoogle Scholar
  123. Sittek H, Kessler M, Heuck AF et al. (1996) Dynamische MR-Mammographie: Zur Differenzierung unterschiedlicher Formen der Mastopathie geeignet? Fortschr Röntgenstr 165: 59–63CrossRefGoogle Scholar
  124. Smallwood JA, Guyer P, Dewbury K et al.(1986) The accuracy of ultrasound in the diagnosis of breast disease. Ann R Coll Surg Engl 68:19–22PubMedGoogle Scholar
  125. Som P, Atkins HL, Bandoypadhyay D et al. (1980) A fluorinated glucose analog, 2-fluoro-2-deoxy-D glucose (F-18): nontoxic tracere for rapid tumor detection. J Nucl Med 21: 670–675PubMedGoogle Scholar
  126. Srivastava A, Webster DJT, Woodcock JP, Shrotria S, Mansel RE, Hughes LE (1988) Role of Doppler ultrasound flowmetry in the diagnosis of breast lumps. Br J Surg 75:851–853PubMedCrossRefGoogle Scholar
  127. Stack JP, Redmond OM, Codd MC, Dervan PA, Ennis JT (1990) Breast disease: Tissue characterisation with Gad-DTPA enhancement profiles. Radiology 174:491–494PubMedGoogle Scholar
  128. Stavros AT, Dennis MA (1993) The ultrasound of breast pathology. In: Parker SH, Jobe WE (Eds) Percutaneous Breast Biopsy. New York: Raven: 111Google Scholar
  129. Tabar L, Fagerberg G, Duffy SW, Day NE, Gad A, Grontoft O (1992) Update of the Swedish two-country program of mammographic screening for breast cancer. Radiol Clin North Am 30:187–210PubMedGoogle Scholar
  130. Tabar L, Fagerberg CJG, Gad A (1985) Reduction in mortality from breast cancer after mass screening with mammography. Lancet 1: 829–222PubMedCrossRefGoogle Scholar
  131. Tabar L, Gad A (1981) Screening for breast cancer: the Swedish trial. Radiology 138: 219–222PubMedGoogle Scholar
  132. Taillefer R (1999) The role of 99mTc-sestamibi and other conventional radiopharmaceuticals in breast cancer diagnosis. Semin Nucl Med 29:16–40PubMedCrossRefGoogle Scholar
  133. Tesoro-Tess JD, Amoruso A, Rovini D et al. (1995) Microcalcifications in clinically normal breast: the value of high field, surface coil, Gd-DTPA-enhanced MRI. Eur Radiol 5:417–422CrossRefGoogle Scholar
  134. Toi M, Inada K, Suzuki H, Tominaga T (1995) Tumor angiogenesis in breast cancer: is importance as a prognostic indicator and the association with vascular endothelial growth factor expression. Breast Cancer Res Treat. 36:193–204PubMedCrossRefGoogle Scholar
  135. Ueno E, Tohno E, Itoh K (1986) Classification and diagnostic criteria in breast echography. Jpn J Med Ultrasonics 13:19Google Scholar
  136. Verbeek ALM, Hendricks JHCL, Holland R, Mravunac M, Sturmans F, Day NE (1984) Reduction of breast cancer mortality through mass screening with modern mammography: first results of the Nijmegen project, 1975–1981. Lancet 1:1222–1224PubMedCrossRefGoogle Scholar
  137. Wahl RL, Cody RL, Hutchins GD, Mudgett EE (1991) Primary and metastatic breast carcinoma: initial clinical evaluation with PET with the radiolabeled glucose analog 2-F-18)-floro-2-deoxy-d-glucose. Radiology 179: 765–770PubMedGoogle Scholar
  138. Wahl RL, Hutchins GD, Buchsbaum DJ, Liebert M, Grossmann HB, Fisher S (1991) 18F-2-deoxy-2fluoro-d-glucose (DG) up-take into human tumor xenografst: feasibility studies for cancer imaging with PET. Cancer 67: 1544–1550PubMedCrossRefGoogle Scholar
  139. Wahl RL, Kaminski MS, Ethier SP, Hutchins GD (1990) The potential of 2-deoxy-2(l8F)fluoro-D-glucose (FDG) for the detection of tumor involvement in lymh nodes. J Nucl Med 31: 1831–1835PubMedGoogle Scholar
  140. Weidner N, Folkman J, Pozza F et al. (1992) Tumor angiogenesis: a new significant and independent prognostic indicator in early-stage breast carcinoma. J Natl Cancer Inst 84: 1875–1887PubMedCrossRefGoogle Scholar
  141. Weinmann HJ, Laniado M, Mützel W (1994) Pharmakokinetics of Gd-DTPA/Dimeglumine after intravenous injection into healthy volunteers. Physiol Chem Phys 16: 67–83Google Scholar
  142. Weinreb JC, Newstead G (1994) Controversies in breast MRI. Magn Reson Q10: 67–83Google Scholar
  143. Wellstein A (1996) Control of angiogenesis. In: Harris JR, Lippman ME, Morrow M, Hellman S: Diseases of the breast. Philadelphia, New York: Lippincott-Raven: 293–298Google Scholar
  144. Wild JJ, Neal D (1951) The use of high frequency ultrasonic waves for detecting changes of texture in the living tissue. Lancet 1: 655–657PubMedCrossRefGoogle Scholar
  145. Won B, Reynolds HE, Lazaridis CL, Jackson VP (1999) Stereotactic biopsy of ductal carcinoma in situ of the breast using an 11-Gauge vacuum-assisted device: persistent underestimation of disease. Am J Roentgenol 173: 227–229CrossRefGoogle Scholar
  146. Zonderland HM, Coerkamp EG, Hermans J, van de Vijer MJ, van Voorthuisen Ad E (1999) Diagnosis of breast cancer: contribution of US as an adjunct to mammography. Radiology 213:413–422PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • A. Rieber
  • H.-J. Brambs
  • C. G. Diederichs
  • R. Kreienberg

There are no affiliations available

Personalised recommendations