Thin Films

  • Rudolf Peter Huebener
Part of the Springer Series in SOLID-STATE SCIENCES book series (SSSOL, volume 6)


In Sect.2.3 we have discussed the Landau domain theory which gives a reasonable description of the dimensions of the normal and superconducting domains in the intermediate state of type-I superconductors. According to the result of Landau’s nonbranching model, indicated in (2.40), with decreasing sample thickness the domain width of the intermediate-state structure decreases and the (positive) wall energy contributes more and more to the free energy of the superconductor. Because of this, the critical field perpendicular to a planar superconducting film decreases with decreasing film thickness and would become zero when the film thickness is about equal to the wall energy parameter δ [2.3]. TINKHAM [5.1] was the first to point out that films of type-I superconductors with a thickness less than the coherence length assume an Abrikosov vortex state in a perpendicular magnetic field, similar to the mixed state in type-II superconductors.


Vortex Coherence 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 5.1
    M. Tinkham: Phys. Rev. 129, 2413 (1963)ADSCrossRefGoogle Scholar
  2. 5.2
    H. Boersch, U. Kunze, B. Lischke, W. Rodewald: Phys. Lett. 44A, 273 (1973)ADSGoogle Scholar
  3. 5.3
    B. Lischke, W. Rodewald: Phys. Status Solidi (b) 63, 97 (1974)ADSCrossRefGoogle Scholar
  4. 5.4
    W. Rodewald: Phys. Lett. 55A, 135 (1975)ADSGoogle Scholar
  5. 5.5
    G.J. Dolan, J. Silcox: Proc. Intern. Conf. Low Temp. Phys. LT 13, 1972, Vol. 3, ed. by K.D. Timmerhaus, W.J. O’Sullivan, E.F. Hammel (Plenum Press, New York 1974) p.147Google Scholar
  6. 5.6
    G.J. Dolan, J. Silcox: Phys. Rev. Lett. 30, 603 (1973)ADSCrossRefGoogle Scholar
  7. 5.7
    G.J. Dolan: J. Low Temp. Phys. 15, 111 (1974)ADSCrossRefGoogle Scholar
  8. 5.8
    G.J. Dolan: J. Low Temp. Phys. 15, 133 (1974)ADSCrossRefGoogle Scholar
  9. 5.9
    E. Guyon, C. Caroli, A. Martinet: J. Phys. Radium 25, 683 (1964)Google Scholar
  10. 5.10
    J. Pearl: Low Temperature Physics — Lt 9, ed. by J.G. Daunt, D.V. Edwards, F.J. Milford, M. Yaqub (Plenum Press, New York 1965) part B, p.566Google Scholar
  11. 5.11
    J. Pearl: J. Appl. Phys. 37, 4139 (1966)ADSCrossRefGoogle Scholar
  12. 5.12
    K. Maki: Ann. Phys. (N.Y.) 34, 363 (1965)ADSCrossRefGoogle Scholar
  13. 5.13
    G. Lasher: Phys. Rev. 154, 345 (1967)ADSCrossRefGoogle Scholar
  14. 5.14
    A.L. Fetter, P.C. Hohenberg: Phys. Rev. 159, 330 (1967)ADSCrossRefGoogle Scholar
  15. 5.16
    J.P. Burger, G. Deutscher, E. Guyon, A. Martinet: Phys. Rev. 137, A853 (1965) 853 (1965)ADSCrossRefGoogle Scholar
  16. 5.17
    G.D. Cody, R.E. Miller: Phys. Rev. 173, 481 (1968)ADSCrossRefGoogle Scholar
  17. 5.18
    G.D. Cody, R.E. Miller: Phys. Rev. B 5, 1834 (1972)ADSCrossRefGoogle Scholar
  18. 5.19
    R.E. Miller, G.D. Cody: Phys. Rev. 173, 494 (1968)ADSCrossRefGoogle Scholar
  19. 5.20
    B.L. Brandt, R.D. Parks, R.D. Chaudhari: J. Low Temp. Phys. 4, 41 (1971)ADSCrossRefGoogle Scholar
  20. 5.21
    M.D. Maloney, F. De la Cruz, M. Cardona: Phys. Rev. B 5, 3558 (1972)ADSCrossRefGoogle Scholar
  21. 5.22
    K.E. Gray: J. Low Temp. Phys. 15, 335 (1974)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Rudolf Peter Huebener
    • 1
  1. 1.Physikalisches InstitutLehrstuhl für Experimentalphysik IITübingenGermany

Personalised recommendations