Thin Films

  • Rudolf Peter Huebener
Part of the Springer Series in SOLID-STATE SCIENCES book series (SSSOL, volume 6)


In Sect.2.3 we have discussed the Landau domain theory which gives a reasonable description of the dimensions of the normal and superconducting domains in the intermediate state of type-I superconductors. According to the result of Landau’s nonbranching model, indicated in (2.40), with decreasing sample thickness the domain width of the intermediate-state structure decreases and the (positive) wall energy contributes more and more to the free energy of the superconductor. Because of this, the critical field perpendicular to a planar superconducting film decreases with decreasing film thickness and would become zero when the film thickness is about equal to the wall energy parameter δ [2.3]. TINKHAM [5.1] was the first to point out that films of type-I superconductors with a thickness less than the coherence length assume an Abrikosov vortex state in a perpendicular magnetic field, similar to the mixed state in type-II superconductors.


Flux Tube Critical Field Abrikosov Vortex Perpendicular Magnetic Field Wall Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 5.1
    M. Tinkham: Phys. Rev. 129, 2413 (1963)ADSCrossRefGoogle Scholar
  2. 5.2
    H. Boersch, U. Kunze, B. Lischke, W. Rodewald: Phys. Lett. 44A, 273 (1973)ADSGoogle Scholar
  3. 5.3
    B. Lischke, W. Rodewald: Phys. Status Solidi (b) 63, 97 (1974)ADSCrossRefGoogle Scholar
  4. 5.4
    W. Rodewald: Phys. Lett. 55A, 135 (1975)ADSGoogle Scholar
  5. 5.5
    G.J. Dolan, J. Silcox: Proc. Intern. Conf. Low Temp. Phys. LT 13, 1972, Vol. 3, ed. by K.D. Timmerhaus, W.J. O’Sullivan, E.F. Hammel (Plenum Press, New York 1974) p.147Google Scholar
  6. 5.6
    G.J. Dolan, J. Silcox: Phys. Rev. Lett. 30, 603 (1973)ADSCrossRefGoogle Scholar
  7. 5.7
    G.J. Dolan: J. Low Temp. Phys. 15, 111 (1974)ADSCrossRefGoogle Scholar
  8. 5.8
    G.J. Dolan: J. Low Temp. Phys. 15, 133 (1974)ADSCrossRefGoogle Scholar
  9. 5.9
    E. Guyon, C. Caroli, A. Martinet: J. Phys. Radium 25, 683 (1964)Google Scholar
  10. 5.10
    J. Pearl: Low Temperature Physics — Lt 9, ed. by J.G. Daunt, D.V. Edwards, F.J. Milford, M. Yaqub (Plenum Press, New York 1965) part B, p.566Google Scholar
  11. 5.11
    J. Pearl: J. Appl. Phys. 37, 4139 (1966)ADSCrossRefGoogle Scholar
  12. 5.12
    K. Maki: Ann. Phys. (N.Y.) 34, 363 (1965)ADSCrossRefGoogle Scholar
  13. 5.13
    G. Lasher: Phys. Rev. 154, 345 (1967)ADSCrossRefGoogle Scholar
  14. 5.14
    A.L. Fetter, P.C. Hohenberg: Phys. Rev. 159, 330 (1967)ADSCrossRefGoogle Scholar
  15. 5.16
    J.P. Burger, G. Deutscher, E. Guyon, A. Martinet: Phys. Rev. 137, A853 (1965) 853 (1965)ADSCrossRefGoogle Scholar
  16. 5.17
    G.D. Cody, R.E. Miller: Phys. Rev. 173, 481 (1968)ADSCrossRefGoogle Scholar
  17. 5.18
    G.D. Cody, R.E. Miller: Phys. Rev. B 5, 1834 (1972)ADSCrossRefGoogle Scholar
  18. 5.19
    R.E. Miller, G.D. Cody: Phys. Rev. 173, 494 (1968)ADSCrossRefGoogle Scholar
  19. 5.20
    B.L. Brandt, R.D. Parks, R.D. Chaudhari: J. Low Temp. Phys. 4, 41 (1971)ADSCrossRefGoogle Scholar
  20. 5.21
    M.D. Maloney, F. De la Cruz, M. Cardona: Phys. Rev. B 5, 3558 (1972)ADSCrossRefGoogle Scholar
  21. 5.22
    K.E. Gray: J. Low Temp. Phys. 15, 335 (1974)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Rudolf Peter Huebener
    • 1
  1. 1.Physikalisches InstitutLehrstuhl für Experimentalphysik IITübingenGermany

Personalised recommendations