Epidemiological Perspectives on Low-Dose Exposure to Human Carcinogens

  • Christian Streffer
  • H. Bolt
  • D. Føllesdal
  • P. Hall
  • J. G. Hengstler
  • P. Jakob
  • D. Oughton
  • K. Prieß
  • E. Rehbinder
  • E. Swaton
Part of the Wissenschaftsethik und Technikfolgenbeurteilung book series (ETHICSSCI, volume 23)


The major strength of epidemiological studies is that human beings are under study, risk is thus not extrapolated from animal data or derived from molecular studies. It should be underlined that epidemiological studies are concerned with events which occur in populations. The primary unit is thus groups of people and not an individual. This is how epidemiology differs from clinical medicine. The clinician is interested in what is wrong with a patient and how to cure the patient, while the epidemiologists ask: “What caused the disease and how could we prevent it?”. Thinking in epidemiological terms often seems strange to clinicians who are used to think of the problem of each single patient.


Thyroid Cancer Environmental Tobacco Smoke Standardise Incidence Ratio Vinyl Acetate Chernobyl Accident 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahlbom A (1988) A review of the epidemiologic literature on magnetic fields and cancer. Scand J Work Environ Health 14: 337–343Google Scholar
  2. Alavania M, Blair A, Masters MN (1990) Cancer mortality in the U.S. flour industry. J Natl Cancer Inst 82: 840–848Google Scholar
  3. Allwright SPA, Colgan PA, McAulay IR, Mullins E (1983) Natural background radiation and cancer mortality in the Republic of Ireland. Int J Epidemiol 12: 414–418Google Scholar
  4. Armstrong B, Kricker A (2001) The epidemiology of UV induced skin cancer. J Photochem Pho-tobiol B 63: 8–18Google Scholar
  5. Astakhova LN, Anspaugh LR, Beebe GW, Bouville A, Drozdovitch VV, Garber Y, Gavrilin YI, Khrouch VT, Kuvshinnikov AV, Kuzmenkov YN, Minenko VP, Moschik, KV, Nalivko AS, Robbins J, Shemiakina EV, Shinkarev S, Tochitskaya SI, Waclawiw MA (1998) Chernobyl-related hyroid cancer in children of Belarus: a case-control study. Radiat Res 150: 349–356Google Scholar
  6. Baverstock K, Egloff B, Pinchera A, Ruchti C, Williams D (1992) Thyroid cancer after Chernobyl. Nature 359: 21–22Google Scholar
  7. Beck EG, Schmidt P (1985) Epidemiological investigations of deceased employees of the asbestos cement industry in the Federal Republic of Germany. Zbl Bakt Hyg, I. Abt Orig B 181: 207–215Google Scholar
  8. Becker N, Berger J, Bolm-Audorff U (2001) Asbestos exposure and malignant lymphomas-a review of the epidemiological literature. Int Arch Occup Environ Health 74: 459–469Google Scholar
  9. Bertazzi PA, Consonni D, Bachetti S, Rubagotti M, Baccarelli A, Zocchetti C, Pesatori AC (2001) Health effects of dioxin exposure: a 20-year mortality study. Am J Epidemiol 153: 1031–1044Google Scholar
  10. Bithell JF, Stiller CA (1988) A new calculation of the carcinogenic risk of obstetric X-raying. Stat Med 7: 857–864Google Scholar
  11. Blot WJ, Morris LE, Stroube R, Tagnon I, Fraumeni JF Jr (1980) Lung and laryngeal cancers in relation to shipyard employment in coastal Virginia. J Natl Cancer Inst 65Google Scholar
  12. Boice JD Jr (1997) Leukaemia, Chernobyl and epidemiology. Invited editorial. J Radiol Prot 17: 129–133Google Scholar
  13. Boice JD Jr, Holm LE (1997) Radiation risk estimates for leukemia and thyroid cancer among Russian emergency workers at Chernobyl. Letter. Radiat Environ Biophys 36: 213–214Google Scholar
  14. Boice JD Jr, Preston D, Davis FG, Monson RR (1991) Frequent chest X-ray fluoroscopy and breast cancer incidence among tuberculosis patients in Massachusetts. Radiat Res 125: 214–222Google Scholar
  15. Burch JD, Howe GR, Miller AB, Semenciw R (1981) Tobacco, alcohol, asbestos, and nickel in the etiology of cancer of the larynx: a case-control study. J Natl Cancer Inst 67: 1219–1224Google Scholar
  16. Cardis E, Gilbert ES, Carpenter L, Howe G, Kato I, Armstrong BK, Beral V, Cowper G, Douglas A, Fix J, Fry SA, Kaldor J, Lavé C, Salmon L, Smith PG, Voelz GL, Wiggs LD (1995) Effects of low doses and low dose rates of external ionizing radiation: cancer mortality among nuclear industry workers in three countries. Radiat Res 142: 117–132Google Scholar
  17. Cellular Telecommunication and Internet Association [CTIA] (2000) How many people use wireless phones? Cellular Telecommunication and Internet Association, Washington, DCGoogle Scholar
  18. Chen D, Wei L (1991) Chromosome aberration, cancer mortality and hormetic phenomena among inhabitants in areas of high background radiation in China. J Radiat Res (Tokyo) 32, Suppl 2: 46–53Google Scholar
  19. Committee on the Biological Effects of Ionizing Radiations [BEIR V] (1990) Health effects of exposure to low levels of ionizing radiation. Natl Acad Sci USA, Natl Res Council. National Academy Press, Washington, DCGoogle Scholar
  20. Committee on the Biological Effects of Ionizing Radiations [BEIR VI] (1999) Health effects of exposure to radon: BEIR VI. Natl Acad Sci USA, Natl Res Council. National Academy Press, Washington, DCGoogle Scholar
  21. Court Brown WM, Doll R, Bradford Hill A (1960) Geographical variation in leukaemia mortality in relation to background radiation and other factors. Br Med J 1: 1753–1759Google Scholar
  22. Darby SC (1991) Contribution of natural ionizing radiation to cancer mortality in the United States. In: Brugge J (ed) Origins of human cancer: a comprehensive review. Cold Spring Harbor Laboratory Press, Plainview, NY, pp 183–190Google Scholar
  23. De Gruijl F, van Kranen H, Mullenders LH (2001) UV-induced DNA damage, repair, mutations and oncogenic pathways in skin cancer. J Photochem Photobiol B 63: 19–27Google Scholar
  24. Delongchamp RR, Mabuchi K, Yoshimoto Y, Preston DL (1997) Cancer mortality among atomic bomb survivors exposed in utero or as young children. Radiat Res 147: 385–395Google Scholar
  25. Demers A, Ayotte P, Brisson J, Dodin S, Robert J, Dewailly E (2002) Plasma concentrations of polychlorinated biphenyls and the risk of breast cancer: a congener-specific analysis. Am J Epidemiol 155: 629–635Google Scholar
  26. Dickman P, Holm LE, Lundell G, Boice J, Hall P (2003) Thyroid cancer risk after examinations with 131–1 in relation to reason for referral and previous disorder. Int J Cancer 106(4): 580–587Google Scholar
  27. Doll R, Peto R (1981) The causes of cancer: quantitative estimates of avoidable risks of cancer in the United States today. J Natl Cancer Inst 66: 1191–1308Google Scholar
  28. Enterline PE (1983) Cancer produced by nonoccupational asbestos exposure in the United States. J Air Pollut Control Assoc 33:318–322Google Scholar
  29. Ewings PD, Bowie C, Phillips MJ, Johnson SA (1989) Incidence of leukaemia in young people in the vicinity of Hinkley Point nuclear power station, 1959–86. Br Med J 299: 289–293Google Scholar
  30. Feychting M, Ahlbom A (1993) Magnetic fields and cancer in children residing near Swedish high-voltage power lines. Am J Epidemiol 138: 467–480Google Scholar
  31. Feychting M, Forssen U, Floderus B (1990) Occupational and residential magnetic field exposure and leukemia and central nervous system tumors. Epidemiology 8: 384–389Google Scholar
  32. Flodin U, Fredriksson M, Persson B, Axelson O (1988) Chronic lymphatic leukaemia and engine exhausts, fresh wood, and DDT: a case-referent study. Br J Ind Med 45: 33–38Google Scholar
  33. Gardner MJ, Jones RD, Pippard EC, Saitoh N (1985) Mesothelioma of the peritoneum during 1967–82 in England and Wales. Br J Cancer 51Google Scholar
  34. Goldman R, Enewold L, Pellizzari E, Beach JB, Bowman ED, Krishnan SS, Shields PG (2001) Smoking increases carcinogenic polycyclic aromatic hydrocarbons in human lung tissue. Cancer Res 61: 6367–6371Google Scholar
  35. Greaves MF (1988) Speculations on the cause of childhood acute lymphoblastic leukemia. Leukemia 2: 120–125Google Scholar
  36. Hackshaw AK, Law MR, Wald NJ (1997) The accumulated evidence on lung cancer and environmental tobacco smoke. Br Med J 315: 980–988Google Scholar
  37. Hall P, Mattsson A, Boice JD Jr (1996) Thyroid cancer after diagnostic administration iodine-131. Radiat Res 145(1): 86–92Google Scholar
  38. Hauptmann M, Pohlabeln H, Lubin JH, Jockei KH, Ahrens W, Bruske-Hohlfeld I, Wichmann HE (2002) The exposure-time-response relationship between occupational asbestos exposure and lung cancer in two German case-control studies. Am J Ind Med 41: 89–97Google Scholar
  39. Heasman MA, Kemp IW, Urquhart JD, Black R (1986) Childhood leukaemia in northern Scotland. Letter. Lancet I: 266Google Scholar
  40. Hodgson JT, Darnton A (2000) The quantitative risks of mesothelioma and lung cancer in relation to asbestos exposure. Ann Occup Hyg 44: 565–601Google Scholar
  41. Inskip P, Tarone R, et al. (2001) Cellular-phone use and brain tumors. N Engl J Med 344: 79–86Google Scholar
  42. International Agency for Research on Cancer [IARC] (1977) Asbestos. IARC Monogr Eval Carcinog Risk Chem Man 14: 1–106Google Scholar
  43. International Agency for Research on Cancer [IARC] (1991) Occupational exposures in insecticide application, and some pesticides. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. IARC Monogr Eval Carcinog Risks Hum 53: 5–586Google Scholar
  44. International Agency for Research on Cancer [IARC] (1997) Polychlorinated dibenzo-para-dioxins and polychlorinated dibenzofurans. IARC Monogr Eval Carcinog Risks Hum 69 1–631Google Scholar
  45. International Commission on Radiological Protection [ICRP] (1990) ICRP Publication 60. Recommendations of the International Commission on Radiological Protection. Annals of the ICRP 21(1–3), Pergamon Press, Oxford, 1991Google Scholar
  46. Ivanov V (1996) Health status and follow-up of liquidators in Russia. In: Karaoglou A, Desmet G G, Kelly N, Menzel HG (eds) The radiological consequences of the Chernobyl accident. Proceedings of the first international conference, Minsk, Belarus, 1996. Office for Official Publications of the European Communities, Luxemburg, EUR 16544. pp 861–870Google Scholar
  47. Ivanov VK, Tsyb AF, Gorsky AI, Maksyutov MA, Rastopchin EM, Konogorov AP, Korelo AM, Biryukov AP, Matyash VA (1997) Leukaemia and thyroid cancer in emergency workers of the Chernobyl accident: estimation of radiation risks (1986–1995). Radiat Environ Biophys 36: 9–16Google Scholar
  48. Jacob P, Goulko G, Heidenreich WF, Likhtarev I, Kairo I, Tronko ND, Bogdanova TI, Kenigsberg J, Buglova E, Drozdovitch V, Golovneva A, Demidchik EP, Balonov M, Zvonova I, Beral V (1998) Thyroid cancer risk to children calculated. Letter. Nature 392: 31–32Google Scholar
  49. Johnson KC, Hu J; Canadian Cancer Registries Epidemiology Research Group (2001). Lifetime residential and workplace exposure to environmental tobacco smoke and lung cancer in never-smoking women, Canada 1994–97. Int J Cancer 93(6): 902–906Google Scholar
  50. Kinlen L (1994) Leukaemia. In: Doll R, Frameni JF, Muir CS (eds) Trends in cancer incidence and mortality. Cold Spring Harbor Laboratory Press, Plainview, NY, pp 475–491Google Scholar
  51. Kossenko MM, Degteva MO, Vyushkova OV, Preston DL, Mabuchi K, Kozheurov VP (1997) Issues in the comparison of risk estimates for the population in the Techa River region and atomic bomb survivors. Radiat Res 148: 54–63Google Scholar
  52. Laden F, Collman G, Iwamoto K, Alberg AJ, Berkowitz GS, Freudenheim JL, Hankinson SE, Helzlsouer KJ, Holford TR, Huang HY, Moysich KB, Tessari JD, Wolff MS, Zheng T, Hunter DJ (2001) 1,1-Dichloro-2,2-bis(p-chlorophenyl)ethylene and polychlorinated biphenyls and breast cancer: combined analysis of five U.S. studies. J Natl Cancer Inst 93: 768–776Google Scholar
  53. Liddell FDK, Thomas DC, Gibbs GW, McDonald JC (1984) Fibre exposure and mortality from pneumoconiosis, respiratory and abdominal malignancies in chrysotile production in Quebec, 1926–75. Ann Acad Med 13: 340–344Google Scholar
  54. Little MP, Muirhead CR (2000) Derivation of low-dose extrapolation factors from analysis of curvature in the cancer incidence dose-response in Japanese atomic bomb survivors. Int J Radiat Biol 76: 939–953Google Scholar
  55. Liu BQ, Peto R, Chen ZM, Boreham J, Wu YP, Li JY, Campbell TC, Chen JS (1998) Emerging tobacco hazards in China: 1. Retrospective proportional mortality study of one million deaths. Br Med J 317: 1411–1422Google Scholar
  56. Lubin JH, Boice Jr. JD, Edling C, Hornung RW, Howe G, Kunz E, Kusiak RA, Morrison HI, Radford EP, Samet JM, Tirmarche M, Woodward A, Yao SX, Pierce DA (1994) Lung cancer and radon: a joint analysis of 11 underground miners studies. U.S. National Institutes of Health, Bethesda MD; Publication No. 94–3644Google Scholar
  57. MacMahon B (1962) Prenatal X-ray exposure and childhood cancer. J Natl Cancer Inst 28: 1173–1191Google Scholar
  58. Magee F, Wright JL, Chan N, Lawson L, Churg A (1986) Malignant mesothelioma caused by childhood exposure to long-fiber low aspect ratio tremolite. Am J Ind Med 9: 529–533Google Scholar
  59. Mason TJ, Miller RW (1974) Cosmic radiation at high altitudes and U.S. cancer mortality, 1950–1969. Radiat Res 60: 302–306Google Scholar
  60. McKinlay A (1997) Possible health effects related to the use of radiotelephones: recommendations of a European Commission Expert Group. Radiol Prot Bull 187: 9–16Google Scholar
  61. Meinert R, Kaletsch U, Kaatsch P, Schuz J, Michaelis J (1999) Associations between childhood cancer and ionizing radiation: results of a population-based case-control study in Germany. Cancer Epidemiol Biomarkers Prev 8: 793–799Google Scholar
  62. Miller AB, Howe GR, Sherman GJ, Lindsay JP, Yaffe MJ, Dinner PJ, Risch HA, Preston DL (1989) Mortality from breast cancer after irradiation during fluoroscopic examinations in patients being treated for tuberculosis. N Engl J Med 321: 1285–1289Google Scholar
  63. Modan B (1991) Low-dose radiation epidemiological studies: an assessment of methodological problems. Review. Ann ICRP 22: 59–73Google Scholar
  64. Mole RH (1990) Childhood cancer after prenatal exposure to diagnostic X-ray examinations in Britain. Br J Cancer 62: 152–168Google Scholar
  65. Mollo F, Magnani C, Bo P, Burlo P, Cravello M (2002) The attribution of lung cancers to asbestos exposure: a pathologic study of 924 unselected cases. Am J Clin Pathol 117: 90–95Google Scholar
  66. Muirhead CR, Butland BK, Green BM, Draper GJ (1991) Childhood leukaemia and natural radiation. Letter. Lancet 337: 503–504Google Scholar
  67. Muirhead CR, Goodill AA, Haylock RG, Vokes J, Little MP, Jackson DA, O’Hagan JA, Thomas JM, Kendall GM, Silk TJ, Bingham D, Berridge GL (1999) Occupational radiation exposure and mortality: second analysis of the National Registry for Radiation Workers. J Radiol Prot 19: 3–26Google Scholar
  68. Muirhead CR, Kneale GW (1989) Prenatal irradiation and childhood cancer. J Radiol Prot 9: 209–212Google Scholar
  69. Naumburg E BR, Cnattingius S, Hall P, Boice JD Jr, Ekbom A (2001) Intrauterine exposure to diagnostic X rays and risk of childhood leukemia subtypes. Radiat Res 156: 718–723Google Scholar
  70. Nordstrom M, Hardell L, Lindstrom G, Wingfors H, Hardell K, Linde A (2000) Concentrations of organochlorines related to titers to Epstein-Barr virus early antigen IgG as risk factors for hairy cell leukemia. Environ Health Perspect 108: 441–445Google Scholar
  71. Oppenheim BE, Griem ML, Meier P (1975) The effects of diagnostic X-ray exposure on the human fetus: an examination of the evidence. Radiology 114: 529–534Google Scholar
  72. Ott MG, Teta MJ, Greenberg HL (1989) Assessment of exposure to chemicals in a complex work environment. Am J Ind Med 16: 617–630Google Scholar
  73. Parkin DM, Kramarova E, Draper GJ, Masuyer E, Michaelis J, Neglia J, Qureshi S, Stiller CA (1998) International incidence of childhood cancer, Vol. II. IARC Sci Publ 144: 1–391Google Scholar
  74. Paur R, Woitowitz HJ, Rodelsperger K, John H (1985) [Pleural mesothelioma following asbestos exposure during brake repairs in the automobile trade: case report] (Ger.). Prax Klin Pneumol 39(10): 362–366Google Scholar
  75. Pershagen G, Akerblom G, Axelson O, Clavensjo B, Damber L, Desai G, Enflo A, Lagarde F, Mellander H, Svartengren M, Swedjemark GA (1994) Residential radon exposure and lung cancer in Sweden. N Engl J Med 330(3): 159–164Google Scholar
  76. Pesatori A, Sontag J, Lubin JH, Consonni D, Blair A (1994) Cohort mortality and nested case-control study of lung cancer among structural pest control workers in Florida (United States). Cancer Causes Control 5(4): 310–318Google Scholar
  77. Pierce DA, Preston DL (2000) Radiation-related cancer risks at low doses among atomic bomb survivors. Radiat Res 154: 178–186Google Scholar
  78. Pierce DA, Shimizu Y, Preston DL, Vaeth M, Mabuchi K (1996) Studies of the mortality of atomic bomb survivors. Report 12, Part 1: 1950–1990. Radiat Res 146(1): 1–27Google Scholar
  79. Poirier MC (1997) DNA adducts as exposure biomarkers and indicators of cancer risk. Environ Health Perspect 105 Suppl 4: 907–912Google Scholar
  80. Poole C, Rothman KJ, Dreyer NA (1988) Leukaemia near Pilgrim nuclear power plant, Massachusetts. Lancet 2(8623): 1308Google Scholar
  81. Richardson S, Monfort C, Green M, Draper G, Muirhead C (1995) Spatial variation of natural radiation and childhood leukaemia incidence in Great Britain. Stat Med 14(21–22): 2487–2501Google Scholar
  82. Robinson CF, Petersen M, Palu S (1999) Mortality patterns among electrical workers employed in the U.S. construction industry, 1982–1987. Am J Ind Med 36(6): 630–637Google Scholar
  83. Ron E, Lubin JH, Shore RE, Mabuchi K, Modan B, Pottern LM, Schneider AB, Tucker MA, Boice JD Jr (1995) Thyroid cancer after exposure to external radiation: a pooled analysis of seven studies. Radiat Res 141(3): 259–277Google Scholar
  84. Rothman KJ, Chou CK, Morgan R, Balzano Q, Guy AW, Funch DP, Preston-Martin S, Mandel J, Steffens R, Carlo G (1996) Assessment of cellular telephone and other radio frequency exposure for epidemiologic research. Epidemiology 7(3): 291–298Google Scholar
  85. Salonen T, Saxén L (1975) Risk indicators in childhood malignancies. Int J Cancer 15: 941–946Google Scholar
  86. Sandén A, Näslund PE, Jarvholm B (1985) Mortality in lung and gastrointestinal cancer among shipyard workers. Int Arch Occup Environ Health 55(4): 277–283Google Scholar
  87. Saracci R (1977) Asbestos and lung cancer: an analysis of the epidemiological evidence on the asbestos-smoking interaction. Int J Cancer 20: 323–331Google Scholar
  88. Sharp L, Black RJ, Harkness EF, McKinney PA (1996) Incidence of childhood leukaemia and non-Hodgkin’s lymphoma in the vicinity of nuclear sites in Scotland, 1968–93. Occup Environ Med 53(12): 823–831Google Scholar
  89. Souchkevitch GN (1996) Main scientific results of the WHO International Programme on the Health Effects of the Chernobyl Accident (IPHECA). World Health Stat Q 49: 209–212Google Scholar
  90. Steenland K, Deddens J, Piacitelli L. (2001) Risk assessment for 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) based on an epidemiologic study. Am J Epidemiol 154(5): 451–458Google Scholar
  91. Steenland K, Piacitelli L, Deddens J, Fingerhut M, Chang LI (1999) Cancer, heart disease, and diabetes in workers exposed to 2,3,7,8-tetrachlorodibenzop-dioxin. J Natl Cancer Inst 91: 779–786Google Scholar
  92. Stewart A, Webb J, Giles D, Hewitt D (1956) Preliminary communication: malignant disease in childhood and diagnostic irradiation in utero. Lancet 2: 447–448Google Scholar
  93. Streffer C, Bücker J, Cansier A, Cansier D, Gethmann CF, Guderian R, Hanekamp G, Henschler D, Pöch G, Rehbinder E, Renn O, Slesina M, Wuttke K (2000) Umweltstandards. Kombinierte Expositionen und ihre Auswirkungen auf die Umwelt. Wissenschaftsethik und Technikfolgenbeurteilung, Bd. 5. Springer, BerlinGoogle Scholar
  94. Tao Z, Wei L (1986) An epidemiological investigation of mutational diseases in the high background radiation area of Yangjiang, China. J Radiat Res (Tokyo) 27: 141–150Google Scholar
  95. Thompson DE, Mabuchi K, Ron E, Soda M, Tokunaga M, Ochikubo S, Sugimoto S, Ikeda T, Terasaki M, Izumi S, Preston DL (1994) Cancer incidence in atomic bomb survivors. Part II: Solid tumors, 1958–1987. Radiat Res 137(2 Suppl): S17–S67Google Scholar
  96. Tynes T, Haldorsen T (1997) Electromagnetic fields and cancer in children residing near Norwegian high-voltage power lines. Am J Epidemiol 145: 219–226Google Scholar
  97. United Nations Scientific Committee on the Effects of Atomic Radiation [UNSCEAR] (1993) Report to the General Assembly, with 9 scientific annexes. United Nations, New YorkGoogle Scholar
  98. United Nations Scientific Committee on the Effects of Atomic Radiation [UNSCEAR] (1994) Report to the General Assembly, with 2 scientific annexes. United Nations, New YorkGoogle Scholar
  99. United Nations Scientific Committee on the Effects of Atomic Radiation [UNSCEAR] (2000) Report to the General Assembly, with 10 scientific annexes. United Nations, New YorkGoogle Scholar
  100. Walter S, King W, Marrett LD (1999) Association of cutaneous malignant melanoma with intermittent exposure to ultraviolet radiation: results of a case-control study in Ontario, Canada. Int J Epidemiol 28(3): 418–427Google Scholar
  101. Waxweiler RJ, Smith AH, Falk H, Tyroler HA (1981) Excess lung cancer risk in a synthetic chemicals plant. Environ Health Perspect 41: 159–165Google Scholar
  102. Wei L, Wang J (1994) Estimate of cancer risk for a large population continuously exposed to higher background radiation in Yangjiang, China. Chinese Med J 107: 541–544Google Scholar
  103. Wei L, Zha Y, Tao ZF, He WH, Chen DQ, Yuan YL (1990) Epidemiological investigation of radiological effects in high background radiation areas of Yangjiang, China. J Radiat Res (Tokyo) 31(1): 119–136Google Scholar
  104. Weinberg CR, Brown KG (1987) Altitude, radiation, and mortality from cancer and heart disease. Radiat Res 112: 381–390Google Scholar
  105. Westermeier T, Michaelis J (1995) Applicability of the Poisson distribution to model the data of the German Children’s Cancer Registry. Radiat Environ Biophys 34: 7–11Google Scholar
  106. Whiteman DC, Whiteman CA, Green AC (2001) Childhood sun exposure as a risk factor for melanoma: a systematic review of epidemiologic studies. Cancer Causes Control 12: 69–82Google Scholar
  107. Wilkins JR, III, Hundley VD (1990) Paternal occupational exposure to electromagnetic fields and neuroblastoma in offspring. Am J Epidemiol 131: 995–1008Google Scholar
  108. Woolcott CG, Aronson KJ, Hanna WM, Sengupta SK, McCready DR, Sterns EE, Miller AB (2001) Organochlorines and breast cancer risk by receptor status, tumor size, and grade (Canada). Cancer Causes Control 12(5): 395–404Google Scholar
  109. Yamashita S, Shibata Y (1997) Chernobyl: a decade. Proceedings of the Fifth Chernobyl Sasakawa Medical Cooperation Symposium, Kiev, Ukraine, October 1996. Elsevier Science BV, AmsterdamGoogle Scholar
  110. Yano E, Wang ZM, Wang XR, Wang MZ, Lan YJ (2001) Cancer mortality among workers exposed to amphibole-free chrysotile asbestos. Am J Epidemiol 154(6): 538–543Google Scholar
  111. Yoshimoto Y, Delongchamp R, Mabuchi K (1994) In-utero exposed atomic bomb survivors: cancer risk update. Letter. Lancet 344(8918): 345–346Google Scholar
  112. Zeegers MP, Swaen GM, Kant I, Goldbohm RA, van den Brandt PA (2001) Occupational risk factors for male bladder cancer: results from a population based case cohort study in the Netherlands. Occup Environ Med 58(9): 590–596Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Christian Streffer
    • 1
  • H. Bolt
  • D. Føllesdal
  • P. Hall
  • J. G. Hengstler
  • P. Jakob
  • D. Oughton
  • K. Prieß
  • E. Rehbinder
  • E. Swaton
  1. 1.EssenGermany

Personalised recommendations