Skip to main content

Introduction

  • Chapter
Logic for Learning

Part of the book series: Cognitive Technologies ((COGTECH))

  • 169 Accesses

Abstract

After an outline of the book, this chapter gives a brief historical introduction to computational logic and machine learning, and their intersection. It also provides some motivation for the topics studied in the form of introductions to learning and to logic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographical Notes

  1. J. A. Robinson. Logic: Form and Function. Edinburgh University Press, 1979.

    Google Scholar 

  2. S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Prentice-Hall, second edition, 2002.

    Google Scholar 

  3. T.M. Mitchell. Machine Learning. McGraw-Hill, 1997.

    Google Scholar 

  4. B. Schölkopf and A. Smola. Learning with Kernels. MIT Press, 2002.

    Google Scholar 

  5. G.D. Plotkin. A note on inductive generalisation. In B. Meltzer and D. Michie, editors, Machine Intelligence 5, pages 153–163, 1970.

    Google Scholar 

  6. G.D. Plotkin. A further note on inductive generalization. In B. Beltzer and D. Michie, editors, Machine Intelligence 6, pages 101–124, 1971.

    Google Scholar 

  7. J.C. Reynolds. Transformational systems and the algebraic structure of atomic formulas. In B. Meltzer and D. Michie, editors, Machine Intelligence 5, pages 135–151, 1970.

    Google Scholar 

  8. R.S. Michalski. A theory and methodology of inductive learning. Artificial Intelligence, 20 (2): 111–161, 1983.

    Article  MathSciNet  Google Scholar 

  9. S. Vere. Induction of concepts in the predicate calculus. In Proceedings of the Fourth International Joint Conference on Artificial Intelligence, pages 351–356, 1975.

    Google Scholar 

  10. C.A. Sammut. Learning Concepts by Performing Experiments. PhD thesis, University of South Wales, Australia, 1981.

    Google Scholar 

  11. C.A. Sammut and R.B. Banerji. Learning concepts by asking questions. In R.S. Michalski, J.G. Carbonell, and T.M. Mitchell, editors, Machine Learning: An Artificial Intelligence Approach, volume 2, pages 167–192. Morgan Kaufmann, 1986.

    Google Scholar 

  12. E.Y. Shapiro. Algorithmic Program Debugging. MIT Press, 1983.

    Google Scholar 

  13. W. Buntine. Generalised subsumption and its application to induction and redundancy. Artificial Intelligence, 36 (2): 149–176, 1988.

    Article  MathSciNet  MATH  Google Scholar 

  14. S. Muggleton and W. Buntine. Machine invention of first-order predicates by inverting resolution. In Proceedings of the Fifth International Conference on Machine Learning, pages 339–352. Morgan Kaufmann, 1988.

    Google Scholar 

  15. J.R. Quinlan. Learning logical definitions from relations. Machine Learning, 5 (3): 239–266, 1990.

    Google Scholar 

  16. S. Muggleton. Inductive logic programming. New Generation Computing, 8 (4): 295–318, 1991.

    Article  MATH  Google Scholar 

  17. S. Muggleton and L. De Raedt. Inductive logic programming: Theory and methods. Journal of Logic Programming, 19 /20: 629–679, 1994.

    Article  MathSciNet  Google Scholar 

  18. J.W. Lloyd. Foundations of Logic Programming. Springer, second edition, 1987.

    Google Scholar 

  19. S.H. Nienhuys-Cheng and R. de Wolf. Foundations of Inductive Logic Programming. Lecture Notes in Artificial Intelligence 1228. Springer, 1997.

    Google Scholar 

  20. S. Dkeroski and N. Lavrac, editors. Relational Data Mining. Springer, 2001.

    Google Scholar 

  21. Home page of ILPnet2.http://www.cs.bris.ac.uk/“ILPnet2/.

  22. Home page of ILP workshops.http://www.cs.york.ac.uk/ILP-events/.

  23. S. Muggleton. Inductive logic programming. New Generation Computing, 8 (4): 295–318, 1991.

    Article  MATH  Google Scholar 

  24. S.H. Nienhuys-Cheng and R. de Wolf. Foundations of Inductive Logic Programming. Lecture Notes in Artificial Intelligence 1228. Springer, 1997.

    Google Scholar 

  25. C.A. Sammut. The origins of inductive logic programming. In S. Muggleton, editor, Proceedings of the 3rd International Workshop on Inductive Logic Programming. Josef Stefan Institute, Ljubljana, 1993. Technical Report IJSDP-6706.

    Google Scholar 

  26. B. Russell. Mathematical logic as based on the theory of types. American Journal of Mathematics, 30: 222–262, 1908.

    Article  MathSciNet  MATH  Google Scholar 

  27. A. Church. A formulation of the simple theory of types. Journal of Symbolic Logic, 5: 56–68, 1940.

    Article  MathSciNet  MATH  Google Scholar 

  28. L. Henkin. Completeness in the theory of types. Journal of Symbolic Logic, 15 (2): 81–91, 1950.

    Article  MathSciNet  MATH  Google Scholar 

  29. P.B. Andrews. An Introduction to Mathematical Logic and Type Theory: To Truth Through Proof. Kluwer Academic Publishers, second edition, 2002.

    Google Scholar 

  30. D.A. Wolfram. The Clausal Theory of Types. Cambridge University Press, 1993.

    Google Scholar 

  31. J.L. Bell. Toposes and Local Set Theories. Oxford Science Publications, 1988.

    Google Scholar 

  32. J. Lambek and P.J. Scott. Introduction to Higher Order Categorical Logic. Cambridge University Press, 1986.

    Google Scholar 

  33. M. Hanus. The integration of functions into logic programming: From theory to practice. Journal of Logic Programming, 19and20: 583–628, 1994.

    Google Scholar 

  34. S. Peyton Jones and J. Hughes (editors). Haskell98: A non-strict purely functional language. http: //haskell. org/.

    Google Scholar 

  35. G. Nadathur and D.A. Miller. Higher-order logic programming. In D.M. Gab-bay, C.J. Hogger, and J.A. Robinson, editors, The Handbook of Logic in Artificial Intelligence and Logic Programming, volume 5, pages 499–590. Oxford University Press, 1998.

    Google Scholar 

  36. M.J.C. Gordon and T.F. Melham. Introduction to HOL: A Theorem Proving Environment for Higher Order Logic. Cambridge University Press, 1993.

    Google Scholar 

  37. M. Hanus (ed.). Curry: An integrated functional logic language.http://www.informatik.uni-kiel.de/`curry.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2003 J. W. Lloyd

About this chapter

Cite this chapter

Lloyd, J.W. (2003). Introduction. In: Logic for Learning. Cognitive Technologies. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-08406-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-08406-9_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07553-7

  • Online ISBN: 978-3-662-08406-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics