The effect of exogenous L-carnitine on biochemical parameters in serum and in heart of the hyperlipidaemic rat

  • F. Maccari
  • A. Arseni
  • P. Chiodi
  • M. T. Ramacci
  • L. Angelucci

Summary

In previous experiments we have demonstrated that L-carnitine administration is capable of reducing olive oil-induced lipidaemia in the rat. In the present study we determined the effect of L-carnitine on the levels of (acyl)carnitines in heart and serum in addition to its effect on serum levels of lipids and ketone bodies after olive oil gavage feeding. L-carnitine was found to reduce the level of myocardial long-chain acylcarnitine which was increased by the olive oil treatment. It also increased the levels of carnitine and acid soluble acylarnitines in both heart and serum. L-carnitine administration caused a clearcut decrease of olive oil-induced lipidaemia and ketonaemia. These effects of added L-carnitine strongly suggest that the stimulation of the β-oxidation in the mitochondria (at the expense of extra mitochondrial triglycerceride synthesis) is suboptimal after fat loading.

Key words

hyperlipidaemia triglycerides carnitines heart serum (in the rat). 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Angelini C, Lucke S, Cantarutti F (1976) Carnitine deficiency of skelatal muscle: report of a treated case. Neurology 26 (7): 633–637PubMedCrossRefGoogle Scholar
  2. 2.
    Bird MI, Saggerson ED (1985) Interacting effects of L-carnitine and malonyl-CoA on rat liver carnitine pamitoyltransferase. Biochem J, 230: 161–167PubMedGoogle Scholar
  3. 3.
    Bohemer T, Bergrem H, Eiklid K (1978) Carnitine deficiency induced during intermittent haemodialysis for renal failure. Lancet 1: 126–128CrossRefGoogle Scholar
  4. 4.
    Brass EP, Hoppel CL (1978) Carnitine metabolism in the fasting rat. J Biol Chem 253: 2688–2693PubMedGoogle Scholar
  5. 5.
    Brass EP, Hoppel CL (1980) Relationship between acid-soluble carnitine and coenzymeA-pools in vivo. Biochem J 190: 495–504PubMedGoogle Scholar
  6. 6.
    Bremer J, Norum KR (1967) Pamityl-CoA: Carnitine 0-palmityltransferase in the mitochondrial oxidation of Palmityl-CoA. Europ J Biochem 1: 427–436PubMedCrossRefGoogle Scholar
  7. 7.
    Cederblad G, Lindstedt S (1972) A method for the determination of carnitine in the picomole range. Clin Chim Acta 37: 235–243PubMedCrossRefGoogle Scholar
  8. 8.
    Dole VP (1956) A relation between non esterified fatty acids in plasma and metabolism of glucose. J Clin Invest 35: 150–154PubMedCrossRefGoogle Scholar
  9. 9.
    Friedman S, Fraenkel G (1955) Reversible enzymatic acetylation of carnitine. Arch Biochem Biophys 59: 491–501PubMedCrossRefGoogle Scholar
  10. 10.
    Karpati G, Carpenter S, Engel AG, Watters G, Allen J, Rothman S, Klassen G, Manner OA (1975) The syndrome of systemic carnitine deficiency. Neurology 25: 16–24PubMedCrossRefGoogle Scholar
  11. 11.
    Konig B, McKaigney E, Contel S. Ross B (1978) Effect of a lipid load on blood and urinary carnitine in man. Clin Chim Acta 88: 121–125Google Scholar
  12. 12.
    Maccari F, Pessotto P, Ramacci MT, Angelucci L (1985) The effect of exogenous L-carnitine on fat diet-induced hyperlipidemia in the rat. Life Science 36: 1967–1975CrossRefGoogle Scholar
  13. 13.
    Maccari F, Ramacci MT, Angelucci L (1980) Serum lipoprotein pattern in rats following fat load: modifications by L-carnitine. In: Noseda G, Lewin B, Paoletti R (eds) Diet and Drugs in Atherosclerosis, Raven Press, New York pp 15–21Google Scholar
  14. 14.
    Maebashi M, Kawamura N, Sato M, Imamura A, Yoshinaga K (1978) Lipid lowering effect of carnitine in patients with type-IV hyperlipoproteinaemia. Lancet 2: 805–807PubMedCrossRefGoogle Scholar
  15. 15.
    Mellanby J, Williamson DH (1974) Acetoacetate and ß-hydroxybutyrate determination. In: Bergmeyer HU (ed) Methods of enzymatic analysis. Verlag Chemie, Weinheim 4: pp 1836–1843Google Scholar
  16. 16.
    Neely JR, Morgan HE (1974) Relationship between carbohydrate and lipid metabolism and the energy balance of heart muscle. Ann Rev Physiol 36: 413–459CrossRefGoogle Scholar
  17. 17.
    Pola P, Sav i L, Grilli M, Flore R, Serricchio M (1980) Carnitine in the therapy of dyslipidemic patients. Curr Ther Res 27 (2): 208–216Google Scholar
  18. 18.
    Seccombe DW, Hahn P, Novak M (1978) The effect of diet and development on blood levels of free and esterified carnitine in the rat. Biochim Biophys Acta 528: 483–489PubMedCrossRefGoogle Scholar
  19. 19.
    Takayama M, Itoh S, Nagasaki T, Tanimizu I (1977) A new enzymatic method for determination of serum choline-containing phospholipids. Clin Chim Acta 79: 93–98PubMedCrossRefGoogle Scholar
  20. 20.
    Trinder P (1969) serum cholesterol enzymatic analysis. Am Clin Biochem 6: 24–31Google Scholar
  21. 21.
    Wahlefeld AW (1974) Triglycerides determination after enzymatic hydrolysis. In: Bergmeyer HU (ed) Methods of enzymatic analysis. Verlag Chemie, Weinheim 4: 1831–1835Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • F. Maccari
    • 1
    • 2
  • A. Arseni
    • 2
  • P. Chiodi
    • 2
  • M. T. Ramacci
    • 2
  • L. Angelucci
    • 3
  1. 1.Direzione Laboratori BiologiciSigma-Tau S. p. A.Pomezia - RomeItaly
  2. 2.Biological Research Labs.Sigma TauPomezia, RomeItaly
  3. 3.Institute of Pharmacology II, Faculty of MedicineUniversity of RomeItaly

Personalised recommendations