Skip to main content

Summary

In mammals, carnitine is synthesized from proteic trimethyllysine in the liver, brain and (in human) kidneys. The hydroxylase catalyzing the last step (deoxycarnitine → carnitine) is missing in the remaining tissues, which are thus entirely dependent on carnitine uptake from the blood. On the basis of experimental evidence, or reasonable assumptions, an interorgan transport of carnitine, carnitine precursors and derivatives is described. In particular, evidence demonstrating a bidirectional exchange between carnitine and deoxycarnitine across cardiac sarcolemma have been provided both in vitro and in vivo experiments. It has been demonstrated that in heart slices carnitine-deoxycarnitine exchange, occurring in a close one to one ratio, is (i) insensitive to both glycolysis and oxidative phosphorylation inhibitors and (ii) sensitive to thiol reagents, such as NEM and Mersalyl. It is assumed that deoxycarnitine is released from muscles into the blood, taken up by the liver, or kidneys, to be hydroxylated to carnitine and the latter returned to the muscles. In vivo evidence for carnitine-deoxycarnitine exchange has been obtained by administering carnitine, or deoxycarnitine, to rats and measuring deoxycarnitine and carnitine, respectively, in different tissues and urine. The results clearly indicate that carnitine administration displaces endogenous deoxycarnitine from tissues and vice versa, thus further supporting the existence of a carnitine-deoxycarnitine exchange process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Paik WK, Kim S (1975) Protein methylation: chemical, enzymological, and biological significance. Adv Enzymol 42: 227–286

    PubMed  CAS  Google Scholar 

  2. Rebouche CJ, Engel AG (1980) Tissue distribution of carnitine biosynthetic enzymes in man. Biochim Biophys Acta 630: 22–29

    Article  PubMed  CAS  Google Scholar 

  3. Hallman KL, Carter AL (1985) The rate limiting step in the development of the carnitine biosynthetic pathway. Fed Proc 44: 763

    Google Scholar 

  4. Rebouche CJ (1982) Sites and regulation of carnitine biosynthesis in mammals. Fed Proc 41: 2848–2852

    PubMed  CAS  Google Scholar 

  5. Cederblad G, Lindstedt S (1976) Metabolism of labeled carnitine in the rat. Arch Biochem Biophys 175: 173–180

    Article  PubMed  CAS  Google Scholar 

  6. Rebouche CJ (1980) Comparative aspects of carnitine biosynthesis in microorganisms and mammals with attention to carnitine biosynthesis in man. In: Frenkel RA, McGarry JD (eds) Carnitine Biosynthesis, Metabolism and Functions. Academic Press New York, pp 57–67

    Google Scholar 

  7. Shug AL, Thompsen JH, Folts JD, Bittar N, Klein ML, Koke JR, Huth PJ (1978) Changes in tissue levels of carnitine and other metabolites during myocardial ischemia and anoxia. Arch Biochem Biophys 187: 25–33

    Article  PubMed  CAS  Google Scholar 

  8. Ferri L, Valente M, Ursini F, Gregolin C, Siliprandi N (1981) Acetyl-carnitine formation and pyruvate oxidation in mitochondria from different rat tissues. Bull Mol Biol Med 6: 16–23

    CAS  Google Scholar 

  9. Sartorelli L, Ciman M, Siliprandi N (1985) Carnitine transport in rat heart slices: I. the action of thiol reagents on the acetylcarnitine/carnitine exchange. Ital J Biochem 34: 275–281

    Google Scholar 

  10. Siliprandi N, Siliprandi D, Ciman M (1965) Stimulation of oxidation of mitochondrial fatty acids and of acetate by acetylcarnitine. Biochem J 96: 777–780

    PubMed  CAS  Google Scholar 

  11. Brhmer T, Hansson V (1977) Carnitine uptake into human heart cells in culture. Biochim Biophys Acta 465: 627–633

    Article  Google Scholar 

  12. Rebouche CJ (1977) Carnitine movement across muscle cell membranes. Studies in isolated rat muscle. Biochim Biophys Acta 471: 145–155

    Article  PubMed  CAS  Google Scholar 

  13. Christiansen RZ, Bremer J (1976) Active transport of butyrobetaine and carnitine into isolated liver cells. Biochim Biophys Acta 448: 562–577

    Article  PubMed  CAS  Google Scholar 

  14. Bahl JJ, Navin TR, Manian AA, Bressler R (1981) Carnitine transport in isolated adult heart myocytes and the effect of 7,8-diOH chlorpromazine. Circ Res 48: 378–385

    Article  PubMed  CAS  Google Scholar 

  15. Sartorelli L, Ciman M, Rizzoli V, Siliprandi N (1982) On the transport mechanism of carnitine and its derivatives in rat heart slices. Ital J Biochem 31: 261–268

    PubMed  CAS  Google Scholar 

  16. Vary TC, Neely JR (1982) Characterization of carnitine transport in isolated perfused adult rat hearts. Am J Physiol 242: H585 — H592

    PubMed  CAS  Google Scholar 

  17. Melstadt P (1980) The efflux of L-carnitine from cells in culture (CCL 27). Biochim Biophys Acta 597: 166–173

    Article  Google Scholar 

  18. Bremer J (1983) Carnitine-metabolism and functions. Physiol Rev 63: 1420–1480

    PubMed  CAS  Google Scholar 

  19. Chase JFA, Pearson DJ, Tubbs PK (1965) The preparation of crystalline carnitine acetyltransferase. Biochim Biophys Acta 96: 162–165

    Article  PubMed  CAS  Google Scholar 

  20. Charke PRH, Bieber LL (1981) Isolation and purification of mitochondrial carnitine octanoyltransferase activities from beef heart. J Biol Chem 256: 9861–9868

    Google Scholar 

  21. Kopec B, Fritz IB (1973) Comparison of properties of carnitine palmitoyltransferase I with those of carnitine palmitoyltransferase II, and preparation of antibodies to carnitine palmitoyltransferase. J Biol Chem 248: 4069–4074

    PubMed  CAS  Google Scholar 

  22. Noël H, Goswami T, Pande SV (1985) Solubilization and reconstitution of rat liver mitochondrial carnitine acylcarnitine translocase. Biochemistry 24: 4504–4509

    Article  PubMed  Google Scholar 

  23. McGarry JD, Leatherman GF, Foster DW (1978) Carnitine palmitoyltransferase I. The site of inhibition of hepatic fatty acid oxidation by malonyl-CoA. J Biol Chem 253: 4128–4136

    Google Scholar 

  24. McGarry JD, Foster DW (1980) Regulation of hepatic fatty acid oxidation and ketone body production. Ann Rev Biochem 49: 395–420

    Article  PubMed  CAS  Google Scholar 

  25. Bird MI, Saggerson ED (1985) Interacting effects of l-carnitine and malonyl-CoA on rat liver carnitine palmitoyltransferase. Biochem J 230: 161–167

    PubMed  CAS  Google Scholar 

  26. Veerkamp JH, Van Moerkerk HTB (1982) The effect of malonyl-CoA on fatty acid oxidation in rat muscle and liver mitochondria. Biochim Biophys Acta 710: 252–255

    Article  PubMed  CAS  Google Scholar 

  27. McGarry JD, Mills SE, Long CS, Foster DW (1983) Observations on the affinity for carnitine, and malonyl-CoA sensitivity, of carnitine palmitoyltransferase I in animal and human tissues. Biochem J 214: 21–28

    PubMed  CAS  Google Scholar 

  28. Scholte HR, Luyt-Houwen IEM. Dubelaar ML, Hlsmann WC (1986) The source of malonyl-CoA in rat heart. The calcium paradox relases acetyl-CoA carboxylase and not propionyl-CoA carboxylase. FEBS Lett 198: 47–50

    Google Scholar 

  29. Harano Y, Kashiwagi A, Kojima H, Suzuki M, Hashimoto T, Shigeta Y (1985) Phosphorylation of carnitine palmitoyltransferase and activation by glucagon in isolated rat hepatocytes. FEBS Lett 188: 267–272

    Article  PubMed  CAS  Google Scholar 

  30. Jenkins DL, Griffith OW (1985) DL-aminocarnitine and acetyl-DL-aminocarnitine. Potent inhibitors of carnitine acyltransferases and hepatic triglyceride catabolism. J Biol Chem 260: 14748–14755

    Google Scholar 

  31. Jenkins DL Griffith OW (1986) Antiketogenic and hypoglycemic effects of aminocarnitine and acylaminocanitines. (Carnitine/diabetes/ketone bodies/fatty acid). Proc Natl Acad Sci USA 83: 290–294

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

H. Stam G. J. van der Vusse

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Siliprandi, N., Ciman, M., Sartorelli, L. (1987). Myocardial carnitine transport. In: Stam, H., van der Vusse, G.J. (eds) Lipid metabolism in the normoxic and ischaemic heart. Steinkopff, Heidelberg. https://doi.org/10.1007/978-3-662-08390-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-08390-1_7

  • Publisher Name: Steinkopff, Heidelberg

  • Print ISBN: 978-3-662-08392-5

  • Online ISBN: 978-3-662-08390-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics