Lipid and carbohydrate metabolism in the ischaemic heart

  • G. J. van der Vusse
  • H. Stam


Ischaemia has profound effects on myocardial metabolism and cell function in general. High energy phosphate and glycogen stores are depleted. Lactate, inorganic phosphate and hydrogen ions accumulate, exerting negative effects on the initially accelerated glycolytic flux. Fatty acid oxidation is inhibited. The cellular content of lipid intermediates, such as hydroxy-fatty acids, acyl CoA and acylcarnitine, increases in low-flow ischaemia hearts. Non-esterified fatty acid (NEFA) accumulation occurs after 30–60 min ischaemia. Endogenous triacylglycerol and phosphoglyceride turnover is most likely impaired, ultimately resulting in accumulation of lipid droplets in the oxygen deprived cells and in degradation of myocardial membranes. Accumulated lipid substances such as NEFA, acyl CoA, acylcarnitine and lysophosphoglycerides, are likeley to be involved in the mechanism underlying ischaemia-induced damage to myocardial cells.

Key words

Ischaemia myocardium carbohydrate metabolism fatty acid metabolism 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bassingthwaighte JB, Kuikka JT, Chan IS, Arts T, Reneman RS (1985) A comparison of ascorbate and glucose transport in the heart. Am J Physiol 249: H141 — H149PubMedGoogle Scholar
  2. 2.
    Bentham JM, Higgins AJ, Woodward B (1987) Phospholipase A2 activity during ischaemia in the isolated rat heart. Basic Res Cardiol (this volume)Google Scholar
  3. 3.
    Chien KR, Han A, Sen A, Buja LM, Willerson JT (1984) Accumulation of unesterified arachidonic acid in ischemic canine myocardium. Circ Res 54: 313–322PubMedCrossRefGoogle Scholar
  4. 4.
    Corr PB, Gross RW, Sobel BE (1984) Amphiphatic metabolites and membrane dysfunction in ischemic myocardium. Circ Res 55: 135–154PubMedCrossRefGoogle Scholar
  5. 5.
    Crass MF, Shipp JC, Pieper GM (1976) Utilization of endogenous lipids and glycogen in the perfused rat heart: effects of hypoxia and epinephrine. Recent Adv Stud Cardiac Struct Metab 7: 219–224Google Scholar
  6. 6.
    Das PK, Engelman RM, Rousou JA, Breyer RH, Otani H, Lemeshow S (1986) Role of membrane phospholipids in myocardial injury induced by ischemia and reperfusion. Am J Physiol 251: 1–171—H79Google Scholar
  7. 7.
    Drake AJ, Haines JR, Noble MIM (1980) Preferential uptake of lactate by the normal myocardium in dogs. Cardiovasc Res 14: 65–72PubMedCrossRefGoogle Scholar
  8. 8.
    Fournier NC, Rahim M (1985) Control of energy production in the heart: a new function of fatty acid binding protein. Biochemistry 24: 2387–2396PubMedCrossRefGoogle Scholar
  9. 9.
    Frederickson DS, Gordon RS (1958) Transport of fatty acids. Physiol Rev 38: 585–630Google Scholar
  10. 10.
    Glatz JFC, Baerwaldt CCF, Veerkamp JH, Kempen HJM (1984) Diurnal variation of cytosolic fatty acid-binding protein content and of palmitate oxidation in rat liver and heart. J Biol Chem 259: 4295–4300PubMedGoogle Scholar
  11. 11.
    Heathers GP, Brunt RV (1985) The effect of coronary artery occlusion and reperfusion on the activities of triglyceride lipase and glycerol 3-phosphate acyltransferase in the isolated perfused rat heart. J Mol Cell Cardiol 17: 907–916PubMedCrossRefGoogle Scholar
  12. 12.
    Hoak JC, Connor WE, Eckstein JW, Warner ED (1964) Fatty acid-induced thrombosis and death: mechanisms and prevention. J Lab Clin Med 65: 791–800Google Scholar
  13. 13.
    Jodalen H, Stangeland L, Grong K, Vik-Mo H, Lekven J (1985) Lipid accumulation in the myocardium during acute regional ischaemia in cats. J Moll Cell Cardiol 17: 973–980CrossRefGoogle Scholar
  14. 14.
    Katz AM, Messineo FC (1981) Lipid-membrane interactions and the pathogenesis of ischemic damage in the myocardium. Circ Res 48: 1–16PubMedCrossRefGoogle Scholar
  15. 15.
    Koster H, Biemond P, Stam H (1987) Lipid peroxidation and myocardial ischaemic changes. Basic Res Cardiol (this volume)Google Scholar
  16. 16.
    Liedtke AJ (1981) Alterations of carbohydrate and lipid metabolism in the acutely ischemic heart. Progr Cardiovasc Dis 5: 321–336CrossRefGoogle Scholar
  17. 17.
    Little SE, Van der Vusse GJ, Bassingthwaighte JB (1986) Myocardial transcapillary transport of palmitate. J Nucl Med 27: 966Google Scholar
  18. 18.
    Mann GE, Zlokovic BV, Yudilevich DL (1985) Evidence for a lactate transport system in the sarcolemmal membrane of the perfused rabbit heart: kinetics of unidirectional influx, carrier specificity and effects of glucagon. Biochim Biophys Acta 819: 241–248PubMedCrossRefGoogle Scholar
  19. 19.
    Moore KH (1985) Fatty acid oxidation in ischemic heart. Mol Physiol 8: 549–563Google Scholar
  20. 20.
    Needleman P, Turk J, Jakschik BA, Morrison AR, Lefkowith JB (1986) Arachidonic acid metabolism. Ann Rev Biochem 55: 69–102PubMedCrossRefGoogle Scholar
  21. 21.
    Neely JR, Morgan HE (1974) Relationship between carbohydrate and lipid metabolism and the energy balance of heart muscle. Ann Rev Physiol 36: 413–459CrossRefGoogle Scholar
  22. 22.
    Neely JR, Garber D, McDonough K, Idell-Wenger J (1979) Relationship between ventricular function and intermediates of fatty acid metabolism during myocardial ischemia: effects of carnitine. In: Win-bury MM, Abiko Y (eds) Perspective in Cardiovasc Res Vol 3: Ischemic myocardium and antianginal drugs. Raven Press, New York, pp 225–239Google Scholar
  23. 23.
    Opie LH (1969) Metabolism of the heart in health and disease. Am Heart J 77: 100–122PubMedCrossRefGoogle Scholar
  24. 24.
    Opie LH, Owen P, Riemersma RA (1973) Relative rates of oxidation of glucose and free fatty acids by ischaemic and non-ischaemic myocardium after coronary artery ligation in the dog. Europ J Clin Invest 3: 419–435PubMedCrossRefGoogle Scholar
  25. 25.
    Prinzen FW, Van der Vusse GJ, Arts T, Roemen THM, Coumans WA, Reneman RS (1984) Accumulation of nonesterified fatty acids in ischemic canine myocardium. Am J Physiol 247: H264 — H272PubMedGoogle Scholar
  26. 26.
    Shaikh NA, Downar E (1981) Time course of changes in porcine myocardial phospholipid levels during ischemia. Circ Res 49: 316–325PubMedCrossRefGoogle Scholar
  27. 27.
    Shug AL, Thomsen JH, Folts JD, Bittar N, Klein MI, Koke JR, Huth Pi (1978) Changes in tissue levels of carnitine and other metabolites during myocardial ischemia and anoxia. Arch Biochem Biophys 187: 25–33PubMedCrossRefGoogle Scholar
  28. 28.
    Stam H, Huelsmann WC (1985) Regulation of lipases involved in the supply of substrate fatty acids for the heart. Eur Heart J 6: 158–167PubMedGoogle Scholar
  29. 29.
    Stam H, Schoonderwoerd K, Huelsmann WC (1987) Synthesis, storage and degradation of myocardial triglycerides. Basic Res Cardiol (this volume)Google Scholar
  30. 30.
    Steenbergen C, Jennings RB (1984) Relationship between lysophospholipid accumulation and plasma membrane injury during total in vitro ischemia in dog heart. J Mol Cell Cardiol 16: 605–623PubMedCrossRefGoogle Scholar
  31. 31.
    Van der Vusse GJ, Roemen THM, Prinzen FW, Coumans WA, Reneman RS (1982) Uptake and tissue content of fatty acids in dog myocardium under normoxic and ischemic conditions. Circ Res 50: 538–546PubMedCrossRefGoogle Scholar
  32. 32.
    Van der Vusse GJ (1983) Are free fatty acids harmful for the myocardium? Myocardial free fatty acids under normoxic and ischemic circumstances. J Drug Res 8: 1578–1584Google Scholar
  33. 33.
    Van Bilsen M, Engels W, Willemsen PHM, Coumans WA, Van der Vusse GJ, Reneman RS (1987) Arachidonic acid accumulation and eicosanoid synthesis during ischemia and reperfusion in isolated rat heart. Prog Appl Microcirc (in press)Google Scholar
  34. 34.
    Vik-Mo H, Riemersma RA, Mjos OD, Oliver MF (1979) Effect of myocardial ischaemia and antilipolytic agents on lipolysis and fatty acid metabolism in the in situ dog heart. Scand J Clin Lab Invest 39: 559–568PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • G. J. van der Vusse
    • 1
    • 2
  • H. Stam
    • 3
  1. 1.Dept. of Physiology, Medical Faculty MaastrichtUniversity of LimburgThe Netherlands
  2. 2.Dept. of Physiology Biomedical Center University of LimburgMaastrichtThe Netherlands
  3. 3.Dept. of Biochemistry I, Medical Faculty RotterdamErasmus University RotterdamThe Netherlands

Personalised recommendations