Cholesterol and myocardial membrane function

  • A. van der Laarse
Conference paper


The incorporation of cholesterol into phospholipid membranes changes the physical properties of the membranes, such as their phase transition, fluidity and homogeneity. In cholesterol-containing phospholipid membranes, integral proteins are surrounded by “annular” phospholipids which exclude cholesterol. Cellular cholesterol is supplied by circulating low-density lipoproteins, and by intracellular de novo synthesis. Cholesterol removal is predominantly handled by circulating high-density lipoproteins. In cardiomyopathic hamsters, myocardial membranes (sarcolemma, mitochondria, sarcoplasmic reticulum) have an increased cholesterol content. In ischaemic myocardium, cholesterol content of sarcolemma fell and that of mitochondria rose. Apparently, cholesterol is redistributed within the ischaemic heart cell. Phospholipids are degraded in sarcolemma, mitochondria and sarcoplasmic reticulum of ischaemic heart cells, probably by activation of phospholipases present in these membrane systems.

Key words

cholesterol phospholipids membranes membranes fluidity sarcolemma ischaemia mitochondria sarcoplasmic reticulum. 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Altona JC, van der Laarse A (1982) Anoxia-induced changes in composition and permeability of sarcolemmal membranes in rat heart cell cultures. Cardiovasc Res 16: 138–143PubMedCrossRefGoogle Scholar
  2. 2.
    Ashraf M, Halverson CA (1977) Structural changes in the freeze-fractured sarcolemma of ischemic myocardium. Am J Pathol 88: 583–588PubMedGoogle Scholar
  3. 3.
    Bretscher MS (1973) Membrane structure: Some general principles. Science 181: 622–629PubMedCrossRefGoogle Scholar
  4. 4.
    Brown MS Goldstein JL (1976) Receptor-mediated control of cholesterol metabolism. Science 191: 150–154PubMedCrossRefGoogle Scholar
  5. 5.
    Chemnitius JM, Sasaki Y, Burger W, Bing RJ (1985) The effect of ischaemia and reperfusion on sarcolemmal function in perfused canine hearts. J Mol Cell Cardiol 17: 1139–1150PubMedCrossRefGoogle Scholar
  6. 6.
    Chien KR, Abrams J, Serroni A, Martin JT, Farber JL (1978) Accelerated phospholipid degradation and associated membrane dysfunction in irreversible, ischaemic liver cell injury. J Biol Chem 253: 4809–4817PubMedGoogle Scholar
  7. 7.
    Chien KR, Pfau RG, Farber JL (1979) Ischaemic myocardial cell injury: Prevention by chlorpromazine of an accelerated phospholipid degradation and associated membrane dysfunction. Am J Pathol 97: 505–522Google Scholar
  8. 8.
    Chien KR, Reeves JP, Buja LM, Bonte F, Parkey RW, Willerson JT (1981) Phospholipid alterations in canine ischaemic myocardium. Circ Res 48: 711–719PubMedCrossRefGoogle Scholar
  9. 9.
    Cooper RA, Diloy-Puray M, Lando P, Greenberg MS (1972) An analysis of lipoproteins, bile acids, and red cell membranes associated with target cells and spur cells in patients with liver disease. J Clin Invest 51: 3182–3192PubMedCrossRefGoogle Scholar
  10. 10.
    Demel RA, De Kruyff B (1976) The function of sterols in membranes. Biochim Biophys Acta 457: 109–132PubMedCrossRefGoogle Scholar
  11. 11.
    Deuticke B, Ruska C (1976) Changes of nonelectrolyte permeability in cholesterol-loaded erythrocytes. Biochim Biophys Acta 433: 638–653PubMedCrossRefGoogle Scholar
  12. 12.
    Franson RC, Pang DC, Towle DW, Weglicki WB (1978) Phospholipase A activity of highly enriched preparations of cardiac sarcolemma from hamster and dog. J Mol Cell Cardiol 10: 921–930PubMedCrossRefGoogle Scholar
  13. 13.
    Franson RC, Weir DL, Thakkar J (1983) Solubilization and characterization of a neutral-active, calcium-dependent, phospholipase A2 from rabbit heart and isolated chick embryo myocytes. J Mol Cell Cardiol 15: 189–196PubMedCrossRefGoogle Scholar
  14. 14.
    Godin DV, Tuchek JM, Moore M (1980) Membrane alterations in acute myocardial ischaemia. Can J Biochem 58: 777–786PubMedGoogle Scholar
  15. 15.
    Grunze M, Deuticke B (1974) Changes of membrane permeability due to extensive cholesterol depletion in mammalian erythrocytes. Biochim Biophys Acta 356: 125–130PubMedCrossRefGoogle Scholar
  16. 16.
    Hasin Y, Shimoni Y, Stein O, Stein Y (1980) Effect of cholesterol depletion on the electrical activity of rat heart myocytes in culture. J Mol Cell Cardiol 12: 675–683PubMedCrossRefGoogle Scholar
  17. 17.
    Higgings TJC, Bailey PJ, Allsopp D (1982) Interrelationship between cellular metabolic status and susceptibility of heart cells to attack by phospholipase. J Mol Cell Cardiol 14: 645–654CrossRefGoogle Scholar
  18. 18.
    Hsu QS, Kaldor G (1971) Studies on the lipid composition of the fragmented sarcoplasmic reticulum of normal and dystrophic chickens. Proc Soc Exp Biol Med 138: 733–737PubMedGoogle Scholar
  19. 19.
    Hughes BP (1972) Lipid changes in Duchenne muscular dystrophy. J Neurol Neurosurg Psych 35: 658–663CrossRefGoogle Scholar
  20. 20.
    Maltese WA, De Vivo DC (1984) Cholesterol and phospholipids in cultured skin fibroblasts from patients with dystonia. Ann Neurol 16: 250–252PubMedCrossRefGoogle Scholar
  21. 21.
    Maltese WA (1984) Cholesterol synthesis in cultured skin fibroblasts from patients with Huntington’s disease. Biochem Med 32: 144–150PubMedCrossRefGoogle Scholar
  22. 22.
    Okumura K, Ogawa K, Satake T (1983) Pretreatment with chlorpromazine prevents phospholipid degradation and creatine kinase depletion in isoproterenol-induced myocardial damage in rats. J Cardiovasc Pharm 5: 983–988CrossRefGoogle Scholar
  23. 23.
    Owens K, Ruth RC, Weglicki WB, Stam AC, Sonnenblick EH (1974) Fragmented sarcoplasmic reticulum of the cardiomyopathic syrian hamster: Lipid composition, Ca++ transport, and Ca++-stimulated ATPase. In: Fleckenstein A and Rona G (eds) Recent Advances in Studies on Cardiac Structure and Metabolism: Vol. 4. University Park Press, Baltimore, pp 541–550Google Scholar
  24. 24.
    Owens K, Hughes BP (1970) Lipids of dystrophic and normal mouse muscle: whole tissue and particulate fractions. J Lipid Res 11: 486–495PubMedGoogle Scholar
  25. 25.
    Owens K, Weglicki WB, Sonnenblick EH, Gertz EW (1972) Phospholipid and cholesterol content of ventricular tissue from the cardiomyopathic Syrian hamster. J Mol Cell Cardiol 4: 229–236PubMedCrossRefGoogle Scholar
  26. 26.
    Richards DE, Irvine RF, Dawson RMC (1979) Hydrolysis of membrane phospholipids by phospholipases of rat liver lysosomes. Biochem J 182: 599–606PubMedGoogle Scholar
  27. 27.
    Rouslin W, MacGee J, Gupte S, Wesselman A, Epps DE (1982) Mitochondrial cholesterol content and membrane properties in porcine myocardial ischaemia. Am J Physiol 242: H254 — H259PubMedGoogle Scholar
  28. 28.
    Schroepfer GJ (1981) Sterol biosynthesis. Ann Rev Biochem 50: 585–621PubMedCrossRefGoogle Scholar
  29. 29.
    Slack BE, Boegman RJ, Downie JW, Jasmin G (1980) Cardiac membrane cholesterol in dystrophic and verapamil-treated hamsters. J Mol Cell Cardiol 12: 179–185PubMedCrossRefGoogle Scholar
  30. 30.
    Szolldr L, Pucsok J, Szelényi I, S6s J (1973) Lipid composition of serum, heart, and liver of hereditary myocardiopathic hamsters (Bio 14.6). In: Bajusz E and Rona G (eds). Recent Advances in Studies on Cardiac Structure and Metabolism. Vol. 2. University Park Press, Baltimore, pp 313–320Google Scholar
  31. 31.
    Vasdev SC, Biro GP, Narbaitz R, Kako KJ (1980) Membrane changes induced by early myocardial ischaemia in the dog. Can J Biochem 58: 1112–1119PubMedCrossRefGoogle Scholar
  32. 32.
    Weglicki WB, Waite M, Sisson P and Shohet SB (1971) Myocardial phospholipase A of microsomal and mitochondrial fractions. Biochim Biophys Acta 231: 512–519PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • A. van der Laarse
    • 1
  1. 1.Department of CardiologyUniversity Hospital LeidenLeidenThe Netherlands

Personalised recommendations