Skip to main content

Membrane phospholipid metabolism during myocardial ischaemia: past, present and future

  • Conference paper

Summary

Alterations in myocardial membrane phospholipids may play an important role in the pathogenesis of ischaemic myocardial cell injury. Studies in canine myocardium, perfused rat heart, and cultured myocardial cells have demonstrated that the accumulation of free arachidonic acid correlates with the development of irreversible cell injury. Accumulation of other phospholipid hydrolysis products, including amphiphilic compounds such as lysophosphatidylcholine, has also been reported. The biochemical mechanisms which are responsible for phospholipid hydrolysis and arachidonic acid accumulation during ischaemia are unknown. This manuscript provides a synopsis of previous work in this field and suggests new directions for the field of myocardial phospholipid metabolism.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hearse BJ, SM Humphrey (1975) Enzyme release during myocardial anoxia: a study of metabolic protection. J Mol Cell Cardiol 1: 325–339

    Google Scholar 

  2. Kloner RA, CE Ganote, DA Whalen, RB Jennings (1974) Effect of a transient period of ischemia on myocardial cells. II. Fine structure during the first few minutes of reflow. Am J Pathol 74: 399–415

    Google Scholar 

  3. Willerson JT, F Scales, A Mukherjee, MR Platt, GH Templeton, GC Fink, LM Buja (1977) Abnormal myocardial fluid retention as an early manifestation of ischemic injury. Am J Pathol 87: 159–188

    PubMed  CAS  Google Scholar 

  4. Chien KR, A Han, A Sen, LM Buja, JT Willerson (1984) Accumulation of unesterified arachidonic acid in ischemic canine myocardium: relationship to a phosphatidylcholine deacylation-reacylation cycle and the depletion of membrane phospholipids. Circ Res 54: 313–322

    Article  PubMed  CAS  Google Scholar 

  5. Farber JL, KR Chien, S Mittnacht (1981) The pathogenesis of irreversible cell injury in ischemia. Am J Pathol 102: 171–178

    Google Scholar 

  6. Katz AM, FC Messineo (1981) Lipid-membrane interactions and the pathogenesis of ischemic damage in the myocardium. Circ Res 48: 1–16

    Article  PubMed  CAS  Google Scholar 

  7. Chien KR, JP Reeves, LM Buja, F Bonte, RW Parkey, JT Willerson (1981) Phospholipid alterations in canine ischemic myocardium. Temporal and topographical correlations with Tc-99m-PPi accumulation and an in vitro sarcolemmal Cat+ permeability defect. Circ Res 48: 711–719

    Article  PubMed  CAS  Google Scholar 

  8. Van der Vusse GJ, THM Roeman, FW Prinzen, WA Coumans, RS Reneman (1982) Uptake and tissue content of fatty acids in dog myocardium under normoxic and ischemic conditions. Circ Res 50: 538–546

    Article  PubMed  Google Scholar 

  9. Hsueh W, PC Isaksan, P Needleman (1977) Hormone selective lipase activation in the isolated rabbit heart. Prostaglandins 13: 1073–1090

    Article  PubMed  CAS  Google Scholar 

  10. Shaikh NA, E Downar (1981) Time Course of changes in porcine myocardial phospholipid levels during ischemia: A reassessment of the lysolipid hypothesis. Circ Res 49: 316–325

    Google Scholar 

  11. Corr PD, DW Snyder, BI Lee, RW Gross, CR Keim, BE Sobel (1982) Pathophysiological concentrations of lysophosphatides and the slow response. Am J Physiol 243: H187 — H195

    PubMed  CAS  Google Scholar 

  12. Whitmer JT, JA Idell-Wenger, MJ Rovetto, JR Neely (1978) Control of fatty acid metabolism in ischemic and hypoxic hearts. J Biol Chem 253: 4305–4309

    PubMed  CAS  Google Scholar 

  13. Lesnefsky EJ, K VanBenthuysen, I McMurtry, PM Fennessey, VL Travis, LD Horwitz (1986) Superoxide dismutase prevents myocardial release of conjugated dienes during early reperfusion. Circulation 74: 1I-347, 1986 (Abstr)

    Google Scholar 

  14. Corr PB, RW Gross, BE Sobel (1984) Amphipathic metabolites and membrane dysfunction in ischemic myocardium. Circ Res 55: 135–154

    Article  PubMed  CAS  Google Scholar 

  15. Wolf RA, RW Gross (1985) Identification of neutral active phospholipase C which hydrolyzes choline glycerophospholipids and plasmalogen selective phospholipase A2 in canine myocardium. J Biol Chem 260: 7295–7303

    PubMed  CAS  Google Scholar 

  16. Nalbone G, KY Hostetler (1985) Subcellular localization for the phospholipases A of rat heart: evidence for a cytosolic phospholipase AI. J Lipid Res 26: 104–114

    PubMed  CAS  Google Scholar 

  17. Palmer JW, PC Schmid, DR Pfeiffer, HHO Schmid (1981) Lipids and lipolytic enzyme activities of rat heart mitochondria. Arch Biochem Biophys 211: 674–682

    Article  PubMed  CAS  Google Scholar 

  18. Weglicki WB, M Waite, P Sisson, SB Shohet (1971) Myocardial phospholipase A of microsomal and mitochondrial fractions. Biochem Biophys Acta 231: 512–519

    Article  PubMed  CAS  Google Scholar 

  19. Franson RF, M Waite, WB Weglicki (1972) Phospholipase A activity of lysosomes of rat myocardial tissue. Biochem 11: 472–476

    Article  CAS  Google Scholar 

  20. Gross RW, RC Drisdel, BE Sobel (1983) Rabbit myocardial lysophospholipase transacylase: Prurification, characterization and inhibition by endogenous cardiac amphiphiles. J Biol Chem 258: 15165–15172

    Google Scholar 

  21. Gross RW, BE Sobel (1982) Lysophosphatidyl choline metabolism in rabbit heart: characterization of metabolic pathways and partial purification of myocardial lysophospholipase-transacylase. J Biol Chem 257: 6702–6708

    PubMed  CAS  Google Scholar 

  22. Beaudry GA, L King, LW Daniel, M Waite (1982) Stimulation of deacylation in Madin-Darby canine kidney cells. J Biol Chem 257: 10973–10977

    PubMed  CAS  Google Scholar 

  23. Wilson DB, SM Prescott, PW Majerus (1982) Discovery of an arachidonoyl coenzyme A synthetase in human platelets. J Biol Chem 257: 3510–3515

    PubMed  CAS  Google Scholar 

  24. Hostetler KY, LB Hall (1980) Phospholipase C activity of rat tissues. Biochem Biophys Res Commun 96: 388–393

    Article  PubMed  CAS  Google Scholar 

  25. Brown SL, JH Brown (1983) Muscarinic stimulation of phosphatidylinositol metabolism in atria. Mol Pharmacol 24: 351–356

    PubMed  CAS  Google Scholar 

  26. Siess W, FL Siegel, EG Lapetina (1983) Arachidonic acid stimulates the formation of 1,2-diacylglycerol and phosphatidic acid in human platelets. J Biol Chem 258: 11236–11242

    PubMed  CAS  Google Scholar 

  27. Zelinski TA, JD Savard, RYK Man, PC Choy (1980) Phosphatidylcholine biosynthesis in isolated hamster heart. J Biol Chem 255: 11423–11428

    PubMed  CAS  Google Scholar 

  28. Gross RW (1985) Identification of plasmalogen as the major phospholipid constituent of cardiac sarcoplasmic reticulum. Biochem 24: 1662–1668

    Article  CAS  Google Scholar 

  29. Chien KR, J Abrams, A Serroni, JT Martin, JL Farber (1978) Accelerated phospholipid degradation and associated membrane dysfunction in irreversible ischemic cell injury. J Biol Chem 253: 4809–4817

    PubMed  CAS  Google Scholar 

  30. Chien KR, J Abrams, RG Pfau, JL Farber (1977) Prevention by chlorpromazine of ischemic liver cell death. Am J Pathol 88: 539–558

    PubMed  CAS  Google Scholar 

  31. Burton KP, LM Buja, A Sen, JT Willerson, KR Chien (1986) Accumulation of arachidonate in triacylglycerol and unesterified fatty acid during ischemia and reflow in the isolated rat heart: Correlation with the loss of contractile function and the development of Cat+ overload. Am J Pathol 124: 238–245

    Google Scholar 

  32. Chien KR, A Sen, R Reynolds, A Chang, Y Kim, MD Gunn, LM Buja, JT Willerson (1985) Release of arachidonate from membrane phospholipids in cultured neonatal rat myocardial cells during adenosine triphosphate depletion. J Clin Invest 75: 1770–1780

    Article  PubMed  CAS  Google Scholar 

  33. Corr PB, ME Cain, FX Witkowski, DA Price, BE Sobel (1979) Potential arrhythmogenic electrophysiological derangements in canine Purkinje fibers induced by lysophosphoglycerides. Cire Res 44: 822–832

    Article  CAS  Google Scholar 

  34. Prinzen FW, GJ Van der V usse, T Arts, THM Roeman, WA Coumans, RS Reneman (1984) Accumulation of non-esterified fatty acids in ischemic canine myocardium. Am J Phyisol 247: H254 — H272.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

H. Stam G. J. van der Vusse

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sen, A., Buja, L.M., Willerson, J.T., Chien, K.R. (1987). Membrane phospholipid metabolism during myocardial ischaemia: past, present and future. In: Stam, H., van der Vusse, G.J. (eds) Lipid metabolism in the normoxic and ischaemic heart. Steinkopff, Heidelberg. https://doi.org/10.1007/978-3-662-08390-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-08390-1_15

  • Publisher Name: Steinkopff, Heidelberg

  • Print ISBN: 978-3-662-08392-5

  • Online ISBN: 978-3-662-08390-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics