Physico-chemical properties and organization of lipids in membranes: their possible role in myocardial injury

  • A. J. Verkleij
  • J. A. Post


Lipids in biological membranes are organized in a bilayer configuration in order to form a semi-permeable barrier. The lipids are freely mobile in the bilayer, which is denoted as “fluid” or liquid-crystalline. For plasma membranes it is assumed that the lipids are not homogeneously distributed over the two leaflets or monolayers. This so-called lipid asymmetry is established for the erythrocyte membrane. There it was found that phosphatidyl serine (PS) and phosphatidylethanolamine (PE) are present exclusively and predominantly in the cytoplasmic leaflet, respectively.

It is shown that isolated PE at physiological conditions forms a non-bilayer configuration the so-called hexagonal HII phase. Moreover, isolated PS can undergo a transition from the fluid into the solid state upon addition of calcium. In mixtures of PS and PE, calcium is able to induce fusion events, possibly formation of the HII phase and phase separation of solid PS.

The physico-chemical behaviour of these phospholipids will be discussed in the light of the structural changes of the sarcolemma of heart muscle cells observed by freeze-fracturing and thin section electron microscopy after ischaemia, ischaemia and reperfusion and the calcium paradox. The lateral phase separation of intramembranous particle aggregation is explained as isothermic phase separation by H+ and calcium. The disruption of the sarcolemma by the formation of blebs (liposomal structures) is interpreted as a destabilization of the bilayer configuration since PE prefers the HII phase and thus induces uncontrolled fusion events. This all leads to an irreversible disruption of the sarcolemma.

Key words

sarcolemma disruption ischaemia lipids Ca+ +-overload 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alto LE, Dhalla NS (1979) Myocardial cation during induction of the calcium paradox. Am J Physiol 237: H713 — H719PubMedGoogle Scholar
  2. 2.
    Boink ABTJ. Ruigrok TJC, de Moes D, Maas AHJ, Zimmerman ANE (1980) The effect of hypothermia on the occurrence of the calcium paradox. Pflügers Arch 385: 105–109PubMedCrossRefGoogle Scholar
  3. 3.
    Borgers M, Thone FJM, Verheyen A and Ter Keurs HEDJ (1984) Localization of calcium in skeletal and cardiac muscle. Histochem J 16: 295–309PubMedCrossRefGoogle Scholar
  4. 4.
    Borgers M, Thone FJM, Xhonneux BJM and de Clerck FFP (1983) Localization of calcium in red blood cells. J Histochem Cytochem 31: 1109–1116PubMedCrossRefGoogle Scholar
  5. 5.
    Cullis PR, de Kruijff B, Hope MJ, Verkleij AJ, Nagar R, Farren SB, Tilcock C, Madden TD, Bally MB. (1983) Structural properties of lipids and their functional roles in biological membranes. In: Aloia RC (ed) Membrane fluidity in biology. Concepts of membrane structure; Academic Press, New York, vol I, pp 39–81Google Scholar
  6. 6.
    Cullis PR and Verkleij AJ (1979) Modulation of membrane structure by Ca+ ’ and dihucaine as detected by 31P-NMR. Biochim Biophys Acta 552: 546–551PubMedCrossRefGoogle Scholar
  7. 7.
    Dhalla NS, Das PK and Sharma GP (1978) Subcellular basis of cardiac contractile failure. J Mol Cell Cardiol 10: 363–385PubMedCrossRefGoogle Scholar
  8. 8.
    van Dijck PWM, de KruijffB, Verkleij AJ, van Deenen LLM and de Gier J (1978) Comparative studies on the effects of pH and Ca++ on bilayers of various negatively charged phospholipide and their mixtures with phosphatidylcholine. Biochim Biophys Acta 512: 84–96PubMedCrossRefGoogle Scholar
  9. 9.
    Elgsaeter A, Shutton D and Branton D (1976) Intramembrane particle aggregation in erythrocyte ghosts. II. The influence on spectrin aggregation. Biochim Biophys Acta 426: 101–122Google Scholar
  10. 10.
    Gerritsen WJ, Verkleij AJ and van Deenen LLM (1979) The lateral distribution of intramembrane particles in the erythrocyte membrane and recombinant vesicles. Biochim Biophys Acta 555: 26–41PubMedCrossRefGoogle Scholar
  11. 11.
    Hearse DJ, Humphrey SM, Bullock GR (1978) The oxygen paradox and the calcium paradox: two facets of the same problem? J Moll Cell Cardiol 10: 641–668CrossRefGoogle Scholar
  12. 12.
    Holland CE, Olson RE (1975) Prevention of hypothermia of paradoxical calcium necrosis in cardiac muscle. J Mol Cell Cardiol 7: 917–928PubMedCrossRefGoogle Scholar
  13. 13.
    Hope MJ and Cullis PR (1979) The bilayer stability of inner monolayer lipids from the human erythrocyte. FEBS Lett 107: 323–326PubMedCrossRefGoogle Scholar
  14. 14.
    Jennings RB, Steenbergen C, Kinney RB, Hill ML and Reimer KA (1983) Comparison of the effect of ischaemia and anoxia on the sarcolemma of the dog heart. Eur Heart J 4 (suppl. H): 123–137PubMedCrossRefGoogle Scholar
  15. 15.
    Katz AM, Reuter H (1979) Cellular calcium and cardiac cell death. Am J Cardiol 44: 168–170Google Scholar
  16. 16.
    De Kruijff B, Cullis PR, Verkleij AJ, Hope MJ, van Echteld CIA, Taraschi TF, van Hoggevest P, Killian JA, Rietveld A, van der Steen ATM (1985) Modulation of lipid polymorphism by lipid-protein interactions. In: Watts A and de Pont JJHHM (eds). Progress in protein-lipid interactions. Elsevier Science Publishers, BV-Amsterdam, pp 89–142Google Scholar
  17. 17.
    Lelkes G, Lelkes G, Szinyei Merse K, Hollan SR (1983) Intensive, reversible aggregation of intramembrane particles in non-haemolyzed human erythrocytes. A freeze-fracture study. Biochim Biophys Acta 732: 48–57Google Scholar
  18. 18.
    Nayar R, Schmid S, Hope MJ and Cullis PR (1982) Structural preferences of phosphatidylinositol and phosphatidylinositol-phosphatidylehanolamine model membranes. Influence of Ca-“- and Mgt+. Biochim Biophys Acta 688: 169–176PubMedCrossRefGoogle Scholar
  19. 19.
    Op den Kamp JAF (1979) Lipid asymmetry in membranes. Ann Rev Biochem 48: 47–71CrossRefGoogle Scholar
  20. 20.
    Post JA, Leunissen-Bijvelt J, Ruigrok TJC and Verkleij AJ (1985) Ultrastructural changes of sarcolemma and mitochondria in the isolated rabbit heart during ischaemia and reperfusion. Biochim Biophys Acta 845: 119–123PubMedCrossRefGoogle Scholar
  21. 21.
    Post JA, Nievelstein PFEM, Leunissen-Bijvelt J, Verkleij AJ and Ruigrok TJC (1985) Sarcolemmal disruption during the Calcium-paradox. J Mol Cell Cardiol 17: 265–273PubMedCrossRefGoogle Scholar
  22. 22.
    Rona G (1985) Catecholamine cardiotoxicity. J Mol Cell Cardiol 17: 291–306PubMedCrossRefGoogle Scholar
  23. 23.
    Singer SJ and Nicholson GL (1972) The fluid mosaic model of the structure of cell membranes. Science 175: 720–731PubMedCrossRefGoogle Scholar
  24. 24.
    Tilcock CPS and Cullis PR (1981) The polymorphic phase behaviour of mixed phosphatidylserincphosphatidylethanolamine model systems as detected by 3 PP-NMR. Effects of divalent cations and pH. Biochim Biophys Acta 641: 189–201PubMedCrossRefGoogle Scholar
  25. 25.
    Verkleij AJ (1984) Lipidic intramembraneous particles. Biochim Biophys Acta 779: 43–63PubMedCrossRefGoogle Scholar
  26. 26.
    Verkleij AJ and Ververgaert PHJTh (1978) Freeze fracture morphology of biological membranes. Biochim Biophys Acta 515: 303–327PubMedCrossRefGoogle Scholar
  27. 27.
    Verkleij AJ, Zwaal RFA, Roelofsen B, Comfurius P, Kastelyn D and van Deenen LLM (1973) The asymmetric distribution of phospholipids in the human red cell membrane. Biochim Biophys Acta 323: 178–193PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • A. J. Verkleij
    • 1
    • 2
  • J. A. Post
    • 2
  1. 1.Molecular Cell Biology and Institute of Molecular BiologyUniversity of UtrechtUtrechtThe Netherlands
  2. 2.Molecular Cell Biology and Institute of Molecular BiologyUniversity of UtrechtUtrechtThe Netherlands

Personalised recommendations