Great Expectations: Prediction in Entertainment Applications

  • Robert Burke
Part of the Cognitive Technologies book series (COGTECH)


The entertainment world is full of applications for expressive, adaptive agents. Many of these applications feature some sort of “creatures” — anthropomorphic or not — that maintain the illusion of life while interacting both with one another and with human participants. This chapter discusses agent-based approaches to implementing those creatures, beginning with a discussion of high-level concepts — such as motivation, perception, and action—selection — in the context of a specific architecture that is representative of many similar systems found in the entertainment world. It then illustrates how the integration of a representation for prediction into that architecture allows for new forms of learning, adaptation, and expressive behavior. This discussion is meant to provide an accessible introduction, and hopefully includes some thought-provoking ideas for those who are similarly interested in building life-like creatures.


Sugar Entropy Stein Arena Tral 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Allen, J.F.: Planning as temporal reasoning. In: The Second International Conference on Principles of Knowledge Representation and Reasoning ( Morgan Kaufmann, Cambridge, MA 1991 )Google Scholar
  2. 2.
    Blumberg, B.M.: Old Tricks, New Dogs: Ethology and Interactive Creatures ( Media Lab Cambridge, MIT 1996 )Google Scholar
  3. 3.
    Blumberg, B., Downie, M., et. al.: Integrated learning for interactive synthetic characters. In: Proceedings of SIGGRAPH ( ACM Press, New York 2002 )Google Scholar
  4. 4.
    Breazeal, C.: Sociable Machines: Expressive Social Exchange Between Humans and Robots. ScD dissertation (Department of Electrical Engineering and Computer Science, MIT 2000 )Google Scholar
  5. 5.
    Brooks, R.A.: Intelligence without representation. Artificial Intelligence Journal 47: 139–159 (1991)CrossRefGoogle Scholar
  6. 6.
    Brooks, R.A., Stein, L.A.: Building Brains for Bodies. MIT AI Lab Memo 1439 (August 1993)Google Scholar
  7. 7.
    Burke, R.C.: It’s About Time: Temporal Representations for Synthetic Characters (The Media Lab Boston, MIT 2001 )Google Scholar
  8. 8.
    Burke, R.C., Isla, D.A., et al.: Creature smarts: The art and architecture of a virtual brain. In: Game Developers Conference, San Jose, CA (2001)Google Scholar
  9. 9.
    Cassell, J., Vilhjálmsson, H., Bickmore, T.: BEAT: the Behavior Expression Animation Toolkit. In: Life-like Characters. Tools, Affective Functions and Applications, ed Prendinger, H., Ishizuka, M. ( Springer 2003 ). This volume.Google Scholar
  10. 10.
    Cole, R.P., Barnet, R.C., et al.: Temporal encoding in trace conditioning. Animal Learning and Behavior 23 (2): 144–153 (1995)CrossRefGoogle Scholar
  11. 11.
    Damasio, A.: Descarte’s Error (Harvard University Press 1995)Google Scholar
  12. 12.
    de Kleer, J., Brown, J.: Theories of causal ordering. Artificial Intelligence Journal 29 (1): 33–62 (1986)CrossRefGoogle Scholar
  13. 13.
    Downie, M.: Behavior, Animation and Music: The Music and Movement of Synthetic Characters (The Media Lab Boston, MIT 2001 )Google Scholar
  14. 14.
    EA Sports. NHL 2003 Coaching Strategies Videos.
  15. 15.
    Ekman, P.: Emotion in the Human Face (Cambridge University Press 1982)Google Scholar
  16. 16.
    EI-Nasr, M.S., Yen, J., Ioerger, T.: FLAME — Fuzzy Logic Adaptive Model of Emotions. International Journal of Autonomous Agents and Multi-Agent Systems 3 (3): 1–39 (2000)Google Scholar
  17. 17.
    Gallistel, C.R., and Gibbon J.: Time, rate and conditioning. Psychological Review 107: 289–344 (2000)CrossRefGoogle Scholar
  18. 18.
    Hofstadter, D.R.: Godel, Escher, Bach: an Eternal Golden Braid (Basic Books 1980 )Google Scholar
  19. 19.
    Honda Humanoid Robot.
  20. 20.
    Isla, D.A.: The Virtual Hippocampus: Spatial Common Sense for Synthetic Characters. MIT Department of Electrical Engineering and Computer Science (MIT, Cambridge 2001 )Google Scholar
  21. 21.
    Isla, D.A., Burke, R.C., et al.: A layered brain architecture for synthetic characters. Proceedings IJCAI, Seattle (2001)Google Scholar
  22. 22.
    Ivanov, Y., Blumberg, B.M., et al.: EM for perceptual coding and reinforcement learning tasks. In: Proceedings 8th International Symposium on Intelligent Robotic Systems, Reading, UK (2000)Google Scholar
  23. 23.
    Johnson, M.P.: Quixote: Quaternion-Based Techniques for Expressive Interactive Character Animation ( Media Lab Cambridge, MIT 2002 )Google Scholar
  24. 24.
    Kaebling, L.P., Littman, L.M., et al.: Reinforcement learning: A survey. Journal of Artificial Intelligence Research 4: 237–285 (1996)Google Scholar
  25. 25.
    Kline, C.: Observation-based Expectation Generation and Response for Behavior-based Artificial Creatures ( Media Lab Cambridge, MIT 1999 )Google Scholar
  26. 26.
    Maes, P.: The dynamics of action selection. In: International Joint Conference on Artificial Intelligence, Detroit ( Morgan Kaufmann, San Fransisco, CA 1989 )Google Scholar
  27. 27.
    Marsella, S., Gratch, J., Rickel, J.: Expressive behaviors for virtual worlds. In: Life-like Characters. Tools, Affective Functions and Applications, ed Prendinger, H., Ishizuka, M. ( Springer 2003 ). This volume.Google Scholar
  28. 28.
    McCallum, A.K.: Reinforcement Learning with Selective Perception and Hidden State. Department of Computer Science, University of Rochester (1995)Google Scholar
  29. 29.
    Minsky, M.: The Society of Mind (Simon and Schuster, New York 1985 )Google Scholar
  30. 30.
    Perlin, K., Goldberg, A.: Improv: A system for scripting interactive actors in virtual worlds. Computer Graphics 30: 205–216 (1996)Google Scholar
  31. 31.
    Rescorla, R.A., Wagner, A.R.: A theory of Pavlovian conditioning: Variations in the effectiveness of reinforcement and nonreinforcement. In: Classical Conditioning II: Current research and theory, ed by Black, A.H., Prokasy, W.F. ( AppletonCentury-Crofts, New York 1972 ) pp 64–99Google Scholar
  32. 32.
    Rose, C. F., Cohen, M., et al.: Verbs and adverbs: Multidimensional motion interpolation. IEEE Computer Graphics and Applications 18 (5) (1999)Google Scholar
  33. 33.
    Russell, J.: A circumplex model of affect. Journal of Personality and Social Psychology 39: 1161–1178 (1980)CrossRefGoogle Scholar
  34. 34.
    Sheridan, T.: Telerobotics, Automation, and Human Supervisory Control ( MIT Press, Cambridge, MA 1992 )Google Scholar
  35. 35.
    Spier, E.: From Reactive Behaviour to Adaptive Behaviour: Motivational Models for Behavior in Animals and Robots (Oxford University Press 1997 )Google Scholar
  36. 36.
    Thorndike, E.: Animal Intelligence ( Hafner, Darien, CT 1911 )Google Scholar
  37. 37.
    Veloso, M., Carbonell, J. et al.: Integrated planning and learning: The PRODIGY architecture. Journal of Experimental and Theoretical Artificial Intelligence 7 (1): 81–120 (1995)MATHCrossRefGoogle Scholar
  38. 38.
    Wang, X.: Learning planning operators by observation and practice. Proceedings AI Planning Systems (1994) pp 335–340Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Robert Burke
    • 1
  1. 1.MediaLabEuropeMindGames GroupDublin 8Ireland

Personalised recommendations