Great Expectations: Prediction in Entertainment Applications

  • Robert Burke
Part of the Cognitive Technologies book series (COGTECH)


The entertainment world is full of applications for expressive, adaptive agents. Many of these applications feature some sort of “creatures” — anthropomorphic or not — that maintain the illusion of life while interacting both with one another and with human participants. This chapter discusses agent-based approaches to implementing those creatures, beginning with a discussion of high-level concepts — such as motivation, perception, and action—selection — in the context of a specific architecture that is representative of many similar systems found in the entertainment world. It then illustrates how the integration of a representation for prediction into that architecture allows for new forms of learning, adaptation, and expressive behavior. This discussion is meant to provide an accessible introduction, and hopefully includes some thought-provoking ideas for those who are similarly interested in building life-like creatures.


Great Expectation Hockey Player Salient Event Opposing Team Predictor Context 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Allen, J.F.: Planning as temporal reasoning. In: The Second International Conference on Principles of Knowledge Representation and Reasoning ( Morgan Kaufmann, Cambridge, MA 1991 )Google Scholar
  2. 2.
    Blumberg, B.M.: Old Tricks, New Dogs: Ethology and Interactive Creatures ( Media Lab Cambridge, MIT 1996 )Google Scholar
  3. 3.
    Blumberg, B., Downie, M., et. al.: Integrated learning for interactive synthetic characters. In: Proceedings of SIGGRAPH ( ACM Press, New York 2002 )Google Scholar
  4. 4.
    Breazeal, C.: Sociable Machines: Expressive Social Exchange Between Humans and Robots. ScD dissertation (Department of Electrical Engineering and Computer Science, MIT 2000 )Google Scholar
  5. 5.
    Brooks, R.A.: Intelligence without representation. Artificial Intelligence Journal 47: 139–159 (1991)CrossRefGoogle Scholar
  6. 6.
    Brooks, R.A., Stein, L.A.: Building Brains for Bodies. MIT AI Lab Memo 1439 (August 1993)Google Scholar
  7. 7.
    Burke, R.C.: It’s About Time: Temporal Representations for Synthetic Characters (The Media Lab Boston, MIT 2001 )Google Scholar
  8. 8.
    Burke, R.C., Isla, D.A., et al.: Creature smarts: The art and architecture of a virtual brain. In: Game Developers Conference, San Jose, CA (2001)Google Scholar
  9. 9.
    Cassell, J., Vilhjálmsson, H., Bickmore, T.: BEAT: the Behavior Expression Animation Toolkit. In: Life-like Characters. Tools, Affective Functions and Applications, ed Prendinger, H., Ishizuka, M. ( Springer 2003 ). This volume.Google Scholar
  10. 10.
    Cole, R.P., Barnet, R.C., et al.: Temporal encoding in trace conditioning. Animal Learning and Behavior 23 (2): 144–153 (1995)CrossRefGoogle Scholar
  11. 11.
    Damasio, A.: Descarte’s Error (Harvard University Press 1995)Google Scholar
  12. 12.
    de Kleer, J., Brown, J.: Theories of causal ordering. Artificial Intelligence Journal 29 (1): 33–62 (1986)CrossRefGoogle Scholar
  13. 13.
    Downie, M.: Behavior, Animation and Music: The Music and Movement of Synthetic Characters (The Media Lab Boston, MIT 2001 )Google Scholar
  14. 14.
    EA Sports. NHL 2003 Coaching Strategies Videos.
  15. 15.
    Ekman, P.: Emotion in the Human Face (Cambridge University Press 1982)Google Scholar
  16. 16.
    EI-Nasr, M.S., Yen, J., Ioerger, T.: FLAME — Fuzzy Logic Adaptive Model of Emotions. International Journal of Autonomous Agents and Multi-Agent Systems 3 (3): 1–39 (2000)Google Scholar
  17. 17.
    Gallistel, C.R., and Gibbon J.: Time, rate and conditioning. Psychological Review 107: 289–344 (2000)CrossRefGoogle Scholar
  18. 18.
    Hofstadter, D.R.: Godel, Escher, Bach: an Eternal Golden Braid (Basic Books 1980 )Google Scholar
  19. 19.
    Honda Humanoid Robot.
  20. 20.
    Isla, D.A.: The Virtual Hippocampus: Spatial Common Sense for Synthetic Characters. MIT Department of Electrical Engineering and Computer Science (MIT, Cambridge 2001 )Google Scholar
  21. 21.
    Isla, D.A., Burke, R.C., et al.: A layered brain architecture for synthetic characters. Proceedings IJCAI, Seattle (2001)Google Scholar
  22. 22.
    Ivanov, Y., Blumberg, B.M., et al.: EM for perceptual coding and reinforcement learning tasks. In: Proceedings 8th International Symposium on Intelligent Robotic Systems, Reading, UK (2000)Google Scholar
  23. 23.
    Johnson, M.P.: Quixote: Quaternion-Based Techniques for Expressive Interactive Character Animation ( Media Lab Cambridge, MIT 2002 )Google Scholar
  24. 24.
    Kaebling, L.P., Littman, L.M., et al.: Reinforcement learning: A survey. Journal of Artificial Intelligence Research 4: 237–285 (1996)Google Scholar
  25. 25.
    Kline, C.: Observation-based Expectation Generation and Response for Behavior-based Artificial Creatures ( Media Lab Cambridge, MIT 1999 )Google Scholar
  26. 26.
    Maes, P.: The dynamics of action selection. In: International Joint Conference on Artificial Intelligence, Detroit ( Morgan Kaufmann, San Fransisco, CA 1989 )Google Scholar
  27. 27.
    Marsella, S., Gratch, J., Rickel, J.: Expressive behaviors for virtual worlds. In: Life-like Characters. Tools, Affective Functions and Applications, ed Prendinger, H., Ishizuka, M. ( Springer 2003 ). This volume.Google Scholar
  28. 28.
    McCallum, A.K.: Reinforcement Learning with Selective Perception and Hidden State. Department of Computer Science, University of Rochester (1995)Google Scholar
  29. 29.
    Minsky, M.: The Society of Mind (Simon and Schuster, New York 1985 )Google Scholar
  30. 30.
    Perlin, K., Goldberg, A.: Improv: A system for scripting interactive actors in virtual worlds. Computer Graphics 30: 205–216 (1996)Google Scholar
  31. 31.
    Rescorla, R.A., Wagner, A.R.: A theory of Pavlovian conditioning: Variations in the effectiveness of reinforcement and nonreinforcement. In: Classical Conditioning II: Current research and theory, ed by Black, A.H., Prokasy, W.F. ( AppletonCentury-Crofts, New York 1972 ) pp 64–99Google Scholar
  32. 32.
    Rose, C. F., Cohen, M., et al.: Verbs and adverbs: Multidimensional motion interpolation. IEEE Computer Graphics and Applications 18 (5) (1999)Google Scholar
  33. 33.
    Russell, J.: A circumplex model of affect. Journal of Personality and Social Psychology 39: 1161–1178 (1980)CrossRefGoogle Scholar
  34. 34.
    Sheridan, T.: Telerobotics, Automation, and Human Supervisory Control ( MIT Press, Cambridge, MA 1992 )Google Scholar
  35. 35.
    Spier, E.: From Reactive Behaviour to Adaptive Behaviour: Motivational Models for Behavior in Animals and Robots (Oxford University Press 1997 )Google Scholar
  36. 36.
    Thorndike, E.: Animal Intelligence ( Hafner, Darien, CT 1911 )Google Scholar
  37. 37.
    Veloso, M., Carbonell, J. et al.: Integrated planning and learning: The PRODIGY architecture. Journal of Experimental and Theoretical Artificial Intelligence 7 (1): 81–120 (1995)MATHCrossRefGoogle Scholar
  38. 38.
    Wang, X.: Learning planning operators by observation and practice. Proceedings AI Planning Systems (1994) pp 335–340Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Robert Burke
    • 1
  1. 1.MediaLabEuropeMindGames GroupDublin 8Ireland

Personalised recommendations