Measurement of instantaneous 2-D velocity field and local chemiluminescence in a premixed-spray flame by PIV and MICRO system

  • S. Tsushima
  • M. Negoro
  • H. Saitoh
  • M. Fuchihata
  • F. Akamatsu
  • M. Katsuki
Conference paper

Abstract

In this article, we demonstrate combined measurements of particle image velocimetry (PIV) and Multi-colour Integrated Cassegrain Receiving Optics (MICRO) in an attempt to observe characteristics of propagating flame in a premixed-spray stream. High-speed images recorded with an intensified CCD camera and cross-correlation PIV method showed the capability in obtaining instantaneous velocity fields in sooty spray flames, where liquid fuel of kerosene was supplied in the form of premixed spray. It enabled us to discuss the influence of fluid turbulent motion on the process of preferential flame propagation. Local chemiluminescence in flames detected by MICRO system was conditionally processed in terms of the distance from the spray boundary that was determined from visualized spray images. The time-averaged one-dimensional structure obtained statistically in the direction of flame propagation showed that two distinct reaction peaks appeared on both sides of the spray boundary, which corresponded to the main vaporization region of a spray.

Keywords

Burner Convection Argon Kerosene Velocimetry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akamatsu, F., Mizutani, Y., Katsuki, M., Tsushima, S., Choi, Y. D. and Nakabe, K., Atom. Sprays, 72: 199 218 (1997).Google Scholar
  2. Akamatsu, F., Wakabayashi, T., Tsushima, S., Katsuki, M., Mizutani, Y., Ikeda, Y., Kawahara, N. and Nakajima, T., Meas. Sci. Tech., 10: 1240–1246 (1999).CrossRefGoogle Scholar
  3. Chew, T. C. Britter, R. E. and Bray, K. N. C., Combust. Flame, 75: 165 (1989).CrossRefGoogle Scholar
  4. Continillo, G. and Sirignano, W. A., Combust. Flame, 81: 325 (1990)CrossRefGoogle Scholar
  5. Gaydon, A. G., The Spectroscopy of Flames, Chapman and Hall, London, 1974.CrossRefGoogle Scholar
  6. Greenberg, J. B., Silverman, I. and Tambour, Y., Combust. Flame, 104: 358–368 (1996).CrossRefGoogle Scholar
  7. Hayashi, S., Kumagai, S. and Sakai, T., Combust. Sci. Tech, 15: 169–177 (1976).CrossRefGoogle Scholar
  8. Li, S. C. and Williams, F. A., Proc. Combustion Inst., Vol. 26, (1996), p. 1017.Google Scholar
  9. Myers, G. D. and Lefebvre, A. H., Combust. Flame, 66: 193–210 (1986).CrossRefGoogle Scholar
  10. Richards, G. A. and Lefebvre, A. H., Combust. Flame, 78: 299–397 (1989).CrossRefGoogle Scholar
  11. Roth, N., Karl, A., Anders, K. and Frohn, A., Proc. Combustion Inst., Vol. 26, (1996), p. 1697.Google Scholar
  12. Tsushima, S., Saitoh, H., Akamatsu, F. and Katsuki, M., Proc. Combustion Inst., Vol. 27, (1998), p. 1967.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • S. Tsushima
    • 1
  • M. Negoro
    • 1
  • H. Saitoh
    • 1
  • M. Fuchihata
    • 1
  • F. Akamatsu
    • 1
  • M. Katsuki
    • 1
  1. 1.Department of Mechanical EngineeringOsaka UniversitySuita, OsakaJapan

Personalised recommendations