Two-dimensional imaging of sizes and number densities of nanoscaled particles

  • H. Geitlinger
  • B. Jungfleisch
  • T. Lehre
  • T. Streibel
  • R. Suntz
  • H. Bockhorn
Conference paper

Abstract

In this work, an optical measuring technique for nonintrusive, in-situ, two dimensional mapping of volume fractions, number densities and median radii of nanoscaled particles is presented. The method is based on the simultaneous two-dimensional detection of RAYleigh-scattering and Laser Induced Incandescence (LII) combined with the measurement of the integral eXtinction from one single Nd-YAG laser pulse and is called RAYLIX. The experimental setup of this technique utilizes a standard Nd-YAG laser, which requires an optical delay line or a modified double pulse PIV-laser. The data evaluation based on the Mie theory of scattering in the Rayleigh regime and the linear dependence of the LII-signal on the volume fraction is discussed as well as an error analysis of the technique is given. Main error sources in the case of measuring soot arise from assumptions for the standard deviation of the lognormal particle size distribution and the refractive index of the soot particles. Applications of the RAYLIX technique are presented including investigations of sooting laminar and turbulent acetylene/nitrogen diffusion flames burning in air. From this, fundamental conclusions concerning soot formation and oxidation can be drawn and consequences for modelling of soot formation processes are discussed. Furthermore, laminar diffusion flames are investigated under conditions that are comparable to exhaust gas recirculation. In these flames increasing inert gas concentration in the coflow decreases rates of soot formation. Nevertheless, increasing inert gas concentration decreases oxidation rates leading to higher soot emission levels. Promising future applications of the RAYLIX method are discussed such as online monitoring of soot particles in carbon black production and the investigation of other nanoscaled particles. Time resolved point measurements of LII signal decays in a laminar low pressure premixed flat flame are compared with model predictions. It is shown, that information about particle size distributions can be extracted from the decay of the LII signal. By providing a method to invert LII signal decays measurement of particle size distributions is possible.

Keywords

Burner Methane Dioxide Attenuation Argon 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Angrill, O., Geitlinger, H., Streibel, T., Suntz;R., and Bockhorn,H., 28th Symp. Int. on Combustion, The Combustion Institute, Pittsburgh, in Press (2000)Google Scholar
  2. Appel, J., Jungfleisch, B., Marquardt, M., Suntz, R., and Bockhorn, H., 26th Symp. Int. on Combustion, 23872395, The Combustion Institute, Pittsburgh (1996)Google Scholar
  3. Arnold, A., Bombach, R., Käppeli, B., and Schlegel, A., Appl. Phys. B 64: 579–583 (1997)CrossRefGoogle Scholar
  4. Bengtsson, P.-E., and Aldén, M., Appl. Phys. B 60: 51–59 (1995)CrossRefGoogle Scholar
  5. Bockhorn, H., Fetting, F., Wannemacher, G., Heddrich, A., Ber. Bunsenges. Phys. Chem. 91:819–825, (1987) Fuchs, N.A., Geophys. Pura Appt 56: 185–193 (1963)Google Scholar
  6. Fuchs, N.A., The Mechanics of Aerosols, Pergamon Press, Oxford, 1964 ( Dover Publications, New York, (1989)Google Scholar
  7. Frisch, U., Turbulence, Cambridge Univ. Press (1995)Google Scholar
  8. Geitlinger, H., Streibel, T., Suntz;R., and Bockhorn,H., 27th Symp. Int. on Combustion, 1613–1621, The Combustion Institute, Pittsburgh (1998)Google Scholar
  9. Geitlinger, H., Streibel, T., Suntz;R., and Bockhorn,H., Fifth International Conference on Technologies and Combustion for a Clean Environment, 2: 1101–1111, The Combustion Institute Portuguese Section (1999a)Google Scholar
  10. Geitlinger, H., Streibel, T., Suntz;R., and Bockhorn,H., Comb.Sci.Tech., Vol 149, p. 115–134, (1999b) Hosemann, J.P., Chem. Ing. Tech., 17: 1015–1021, (1972)Google Scholar
  11. Jones, A. R., J. Phys. D. 12: 1661–1672 (1979)CrossRefGoogle Scholar
  12. Kennard, E.H., Kinetic Theory of Gases, McGraw-Hill, New York (1938)Google Scholar
  13. Kerker, M., The Scattering of Light and Other Electromagnetic Radiation, Academic Press, New York (1969)Google Scholar
  14. Knudsen, M., Ann. Physik 47: 697 (1915)CrossRefGoogle Scholar
  15. Landolt-Börnstein, 6th Edition, II2a, pp. 1 — 30, Springer Verlag, Berlin-Heidelberg-New York, (1960)Google Scholar
  16. Landolt-Börnstein, 6th Edition, IISb, pp. 238 — 246, Springer Verlag, Berlin-Heidelberg-New York, (1968) Melton, L.A., Appl. Optics 23:2201–2208 (1984)Google Scholar
  17. Neoh, K. G., Howard, J. B., and Sarofim, A. F. 20th Symp. Int. on Combustion, 951–957, The Combustion Institute, Pittsburgh (1984)Google Scholar
  18. Quay, B., Lee, T.-W., Ni, T., and Santoro, R. J., Combust. Flame 97: 384–392 (1994)CrossRefGoogle Scholar
  19. Roth, P., Filipov, A. V., J. Aerosol Sci., 27:95–104, Pergamon Press (1996)Google Scholar
  20. Santoro, R. J., Semerjian, H. G. and Dobbins, R. A., Combustion and Flame 51: 203–218 (1983)CrossRefGoogle Scholar
  21. Schafer, T., PhD thesis, TH Darmstadt (1994)Google Scholar
  22. Suntz,R., Marquardt,M., Jungfleisch, B., and Bockhorn,H., Fourth International Conference on Technologies and Combustion for a Clean Environment, Lisbon, 24. 1, 1997Google Scholar
  23. Tait, N. P., and Greenhalgh, D. A. Ber. Bunsen-Ges. Phys. Chem. 97:1619–1625 (1993)Google Scholar
  24. Van de Hu1st, H. C. Light Scattering by Small ParticlesWiley & Sons, New York (1957)Google Scholar
  25. Vander Wal, R. L., and Weiland, K. J. Appl. Phys. B 59:445 (1994)Google Scholar
  26. Vander Wal, R. L., and Jensen, K. A. Appl. Optics 37:1607–1616 (1998a)Google Scholar
  27. Vander Wal, R. L., Ticich, T. M., and West, J. R. Appl. Optics 38:5867–5879 (1998b)Google Scholar
  28. Will, S., Schraml, S. and Leipertz, A., 26th Symp. Int. on Combustion, 2277–2284, The Combustion Institute, Pittsburgh (1996) Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • H. Geitlinger
    • 1
  • B. Jungfleisch
    • 1
  • T. Lehre
    • 1
  • T. Streibel
    • 1
  • R. Suntz
    • 1
  • H. Bockhorn
    • 1
  1. 1.Institut für Chemische Technik and Engler-Bunte-Institut, Bereich VerbrennungstechnikUniversität Karlsruhe (TH)KarlsruheGermany

Personalised recommendations