Doppler-Limited Absorption and Fluorescence Spectroscopy with Lasers

  • Wolfgang Demtröder


After having presented in the previous chapter the different realizations of tunable lasers, we now discuss their applications in absorption and fluorescence spectroscopy. At first those methods where the spectral resolution is limited by the Doppler width of the molecular absorption lines will be treated. This limit can in fact be reached if the laser line-width is small compared with the Doppler width. In several examples, such as optical pumping or laser-induced fluorescence spectroscopy, multimode lasers may be employed, although in most cases single-mode lasers will be superior. In general, however, these lasers may not necessarily be frequency stabilized as long as the frequency jitter is small compared with the absorption line-width. We compare several detection techniques of molecular absorption with regard to their sensitivity and their feasibility in the different spectral regions. Some examples illustrate the methods to give the reader a feeling of what has been achieved. After the discussion of the “Doppler-limited spectroscopy”, Chaps. 7–10 give an extensive treatment of various techniques which allow sub-Doppler spectroscopy.


Tunable Laser Excited Molecule Photoacoustic Spectroscopy Doppler Width Ionization Spectroscopy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 6.1
    R.J. Bell: Introductory Fourier Transform Spectroscopy (Academic, New York 1972)Google Scholar
  2. 6.2
    D.G. Cameron, D.J. Moffat: A generalized approach to derivative spectroscopy. Appl. Spectrosc. 41, 539 (1987)ADSCrossRefGoogle Scholar
  3. 6.3
    G.C. Bjorklund: Frequency-modulation spectroscopy: A new method for measuring weak absorptions and dispersions. Opt. Lett. 5, 15 (1980)ADSCrossRefGoogle Scholar
  4. 6.4
    M. Gehrtz, G.C. Bjorklund, E. Whittaker: Quantum-limited laser frequencymodulation spectroscopy. J. Opt. Soc. Am. B 2, 1510 (1985)ADSCrossRefGoogle Scholar
  5. 6.5
    G.R. Janik, C.B. Carlisle, T.F. Gallagher: Two-tone frequency-modulation spectroscopy. J. Opt. Soc. Am. B 3, 1070 (1986)ADSCrossRefGoogle Scholar
  6. 6.6
    F.S. Pavone, M. Inguscio: Frequency- and wavelength-modulation spectroscopy: Comparison of experimental methods, using an AlGaAs diode laser. Appl. Phys. B 56, 118 (1993)ADSCrossRefGoogle Scholar
  7. 6.7
    R. Grosskloss, P. Kersten, W. Demtröder: Sensitive amplitude and phase-modulated absorption spectroscopy with a continuously tunable diode laser. Appl. Phys. B 58, 137 (1994)ADSCrossRefGoogle Scholar
  8. 6.8
    W. Brunner, H. Paul: On the theory of intracavity absorption. Opt. Commun. 12, 252 (1974)ADSCrossRefGoogle Scholar
  9. 6.9
    K. Tohama: A simple model for intracavity absorption. Opt. Commun. 15, 17 (1975)ADSCrossRefGoogle Scholar
  10. 6.10
    A. Campargue, F. Stoeckel, M. Chenevier: High sensitivity intracavity laser spectroscopy: applications to the study of overtone transitions in the visible range. Spectrochimica Acta Rev. 13, 69 (1990)Google Scholar
  11. 6.11
    V.M. Baev, T.P. Belikova, E.A. Sviridenkov, A.F. Suchkov: Intracavity laser spectroscopy with continuous and quasi-continuous lasers. Sov. Phys. — JETP 47, 21 (1978)ADSGoogle Scholar
  12. 6.11a
    V.M. Baev: Intercavity absorption. Appl. Phys. B 55, 463 (1992)ADSCrossRefGoogle Scholar
  13. 6.12
    V.R. Mironenko, V.I. Yudson: Quantum noise in intracavity laser spectroscopy. Opt. Commun. 34, 397 (1980)ADSCrossRefGoogle Scholar
  14. 6.12
    V.R. Mironenko, V.I. Yudson: Quantum noise in intracavity laser spectroscopy. Sov. Phys. — JETP 52, 594 (1980)ADSGoogle Scholar
  15. 6.13
    P.E. Toschek, V.M. Baev: In Laser Spectroscopy and New Ideas, ed. by W.M. Yen, M.D. Levenson, Springer Ser. Opt. Sci., Vol.54 (Springer, Berlin, Heidelberg 1987)Google Scholar
  16. 6.14
    E.M. Belenov, M.V. Danileiko, V.R. Kozuborskii, A.P. Nedavnii, M.T. Shpak: Ultrahigh resolution spectroscopy based on wave competition in a ring laser. Sov. Phys. — JETP 44, 40 (1976)ADSGoogle Scholar
  17. 6.15
    E.A. Sviridenko, M.P. Frolov: Possible investigations of absorption line profiles by intracavity laser spectroscopy. Sov. J. Quant. Electron. 7, 576 (1977)ADSCrossRefGoogle Scholar
  18. 6.16
    T.W. Hänsch, A.L. Schawlow, P. Toschek: Ultrasensitive response of a CW dye laser to selective extinction. IEEE J. QE-8, 802 (1972)CrossRefGoogle Scholar
  19. 6.17
    R.N. Zare: Laser Separation of Isotopes. Sci. Am. 236, 86 (February 1977)CrossRefGoogle Scholar
  20. 6.18
    R.G. Bray, W. Henke, S.K. Liu, R.V. Reddy, M.J. Berry: Measurement of highly forbidden optical transitions by intracavity dye laser spectroscopy. Chem. Phys. Lett. 47, 213 (1977)ADSCrossRefGoogle Scholar
  21. 6.19
    H. Atmanspacher: Resonator interne Absorption und nichtlineare Dynamik von Multimode-Lasersystemen. Dissertation, University of Munich (1986); MPQReport 197 (Garching 1986)Google Scholar
  22. 6.20
    W. Schrepp, H. Figger, H. Walther: Intracavity spectroscopy with a Color-Center laser. Lasers and Applications 77 (July 1984)Google Scholar
  23. 6.21
    V.M. Baev, K.J. Boller, A. Weiler, P.E. Toschek: Detection of spectrally narrow light emission by laser intracavity spectroscopy. Opt. Commun. 62, 380 (1987)ADSCrossRefGoogle Scholar
  24. 6.22
    V.M. Baev, A. Weiler, P.E. Toschek: Ultrasensitive intracavity spectroscopy with multimode lasers. J. Physique 48, C7, 701 (1987)Google Scholar
  25. 6.23
    T.D. Harris: Laser intracavity-enhanced spectroscopy, in Ultrasensitive Laser Spectroscopy, ed. by D.S. Kliger (Academic, New York 1983)Google Scholar
  26. 6.24
    E.H. Piepmeier (ed.): Analytical Applications of Lasers (Wiley, New York 1986)Google Scholar
  27. 6.25
    H. Atmanspacher, H. Scheingraber, C.R. Vidal: Dynamics of laser intracavity absorption. Phys. Rev. A 32, 254 (1985) Mode-correlation times and dynamical instabilities in a multimode CW dye laser. Phys. Rev. A 33, 1052 (1986)ADSCrossRefGoogle Scholar
  28. 6.26
    H. Atmanspacher, H. Scheingraber, V.M. Baev: Stimulated Brillouin scattering and dynamical instabilities in a multimode laser. Phys. Rev. A 35, 142 (1987)ADSCrossRefGoogle Scholar
  29. 6.27
    K.H. Becker, D. Haaks, T. Tartarczyk: Measurements of C2 -radicals in flames with a tunable dye lasers. Z. Naturforsch. 29a, 829 (1974)ADSGoogle Scholar
  30. 6.28
    W.M. Fairbanks, T.W. Hänsch, A.L. Schawlow: Absolute measurement of very low sodium-vapor densities using laser resonance fluorescence. J. Opt. Soc. Am. 65, 199 (1975)ADSCrossRefGoogle Scholar
  31. 6.29
    H.G. Krämer, V. Beutel, K. Weyers, W. Demtröder: Sub-Doppler laser spectroscopy of silver dimers Ag2 in a supersonic beam. Chem. Phys. Lett. 193, 331 (1992)ADSCrossRefGoogle Scholar
  32. 6.30
    P.J. Dagdigian, H.W. Cruse, R.N. Zare: Laser fluorescence study of AlO, formed in the reaction Al+02; Product state distribution, dissociation energy and radiative lifetime. J. Chem. Phys. 62, 1824 (1975)ADSCrossRefGoogle Scholar
  33. 6.31
    References to the historical development can be found in H.J. Bauer: Son et lumiere or the optoacoustic effect in multilevel systems. J. Chem. Phys. 57, 3130 (1972)ADSCrossRefGoogle Scholar
  34. 6.32
    Yoh-Han Pao (ed.): Optoacoustic Spectroscopy and Detection (Academic, New York 1977)Google Scholar
  35. 6.33
    A. Rosencwaig: Photoacoustic and Photoacoustic Spectroscopy (Wiley, New York 1980)Google Scholar
  36. 6.34
    V.P. Zharov, V.S. Letokhov: Laser Optoacoustic Spectroscopy, Springer Ser. Opt. Sci., Vol. 37 (Springer, Berlin, Heidelberg 1986)CrossRefGoogle Scholar
  37. 6.35
    C. Forbes Dewey, Jr.: Opto-acoustic spectroscopy, in Impact of Lasers on Spectroscopy, Proc. Soc. Photo Opt. Instrum. Eng. 49, 13 (1974)CrossRefGoogle Scholar
  38. 6.36
    C.K.N. Patel: Spectroscopic measurements of stratospheric nitric oxide and water vapor. Science 184, 1173 (1974)ADSCrossRefGoogle Scholar
  39. 6.37
    A. Rosencwaig: The spectraphone. Anal. Chem. 47, 592A (1975)CrossRefGoogle Scholar
  40. 6.38
    S.O. Kanstadt, P.E. Nordal: Photoacoustic and photothermal spectroscopy. Phys. Technol. 11, 142 (1980)ADSCrossRefGoogle Scholar
  41. 6.39
    P. Hess, J. Pelzl (eds.): Photoacoustic and Photothermal Phenomena, Springer Ser. Opt. Sci., Vol.58 (Springer, Berlin, Heidelberg 1988)Google Scholar
  42. 6.40
    P. Hess (ed.): Photoacoustic, Photothermal and Photochemical Processes in Gases, Topics Curr. Phys., Vol.46 (Springer, Berlin, Heidelberg 1989)Google Scholar
  43. 6.41
    J.C. Murphy, J.W. Maclachlan Spicer, L.C. Aamodt, B. S.H. Royce (eds.): Photoacoustic and Photothermal Phenomena II, Springer Ser. Opt. Sci., Vol.62 (Springer, Berlin, Heidelberg 1990)Google Scholar
  44. 6.42
    L.B. Kreutzer: Laser optoacoustic spectroscopy. A new technique of gas analysis. Anal. Chem. 46, 239A (1974)CrossRefGoogle Scholar
  45. 6.43
    W. Schnell, G. Fischer: Spectraphone measurements of isotopes of water vapor and nitricoxyde and of phosgene at selected wavelengths in the CO- and CO2-laser region. Opt. Lett. 2, 67 (1978)ADSCrossRefGoogle Scholar
  46. 6.44
    S.D. Smith: High resolution infrared spectroscopy, in High Resolution Spectroscopy, ed. by S.D. Smith (Academic, New York 1976) p.13Google Scholar
  47. 6.45
    Ch. Hornberger, W. Demtröder: Photoacoustic overtone spectroscopy of acethylene in the visible and near infrared. Chem. Phys. Lett. 190, 171 (1994)Google Scholar
  48. 6.46
    C.K.N. Patel: Use of vibrational energy transfer for excited-state opto-acoustic spectroscopy of molecules. Phys. Rev. Lett. 40, 535 (1978)ADSCrossRefGoogle Scholar
  49. 6.47
    G. Stella, J. Gelfand, W.H. Smith: Photoacoustic detection spectroscopy with dye laser excitation. The 6190 A CH4 and the 6450 NH3-bands. Chem. Phys. Lett. 39, 146 (1976)ADSCrossRefGoogle Scholar
  50. 6.48
    A.M. Angus, E.E. Marinero, M.J. Colles: Opto-acoustic spectroscopy with a visible CW dye laser. Opt. Commun. 14, 223 (1975)ADSCrossRefGoogle Scholar
  51. 6.49
    E.E. Marinero, M. Stuke: Quartz optoacoustic apparatus for highly corrosive gases. Rev. Sci. Instrum. 50, 31 (1979)CrossRefGoogle Scholar
  52. 6.50
    A.C. Tam: Photoacoustic, Spectroscopy and other applications. In Ultrasensitive Laser Spectroscopy, ed. by I .S. Kliger (Academic, New York 1983) pp.1–108Google Scholar
  53. 6.51
    A.C. Tam, C.K.N. Patel: High-resolution optoacoustic spectroscopy of rare-earth oxide powders. Appl. Phys. Lett. 35, 843 (1979)ADSCrossRefGoogle Scholar
  54. 6.52
    T.E. Gough, G. Scoles: Optothermal infrared spectroscopy, in Laser Spectroscopy V, ed. by A.R.W. McKeller, T. Oka, B.P. Stoicheff, Springer Ser. Opt. Sci., Vol.30 (Springer, Berlin, Heidelberg 1981) p.337Google Scholar
  55. 6.53
    M. Zen: Cyrogenic bolometers, in Atomic and Molecular Beams Methods (Oxford Univ. Press, London 1988) Vol. 1Google Scholar
  56. 6.54
    R.E. Miller: Infrared laser spectroscopy of molecular beams. PhD Thesis, Univ. of Waterloo, Ontario (1980)Google Scholar
  57. 6.55
    H. Coufal: Photothermal spectroscopy and its analytical application. Fresenius Z. Anal. Chem. 337, 835 (1990)CrossRefGoogle Scholar
  58. 6.56
    F. Träger: Surface analysis by laser-induced thermal waves. Laser u. Optoelektronik 18, 216 Sept. (1986); Surf. Sci. 145, L504 (1984)Google Scholar
  59. 6.57
    P.E. Siska: Molecular-beam studies of Penning ionization. Rev. Mod. Phys. 65, 337 (1993)ADSCrossRefGoogle Scholar
  60. 6.58
    Yu Ya Kuzyakov, N.B. Zorov: Atomic ionization spectrometry. CRC Critical reviews in Anal. Chem. 20, 221 (1988)CrossRefGoogle Scholar
  61. 6.59
    G.S. Hurst, M.G. Payne, S.P. Kramer, J.P. Young: Resonance ionization spectroscopy and single atom detection. Rev. Mod. Phys. 51, 767 (1979)ADSCrossRefGoogle Scholar
  62. 6.60
    G.S. Hurst, M.P. Payne, S.P. Kramer, C.H. Cheng: Counting the atoms. Physics Today 33, 24 (September 1980)CrossRefGoogle Scholar
  63. 6.61
    L. Wöste: Zweiphotonen-Ionisation. Laser u. Optoelectronik 15, 9 (February 1983)Google Scholar
  64. 6.62
    G. Delacretaz, J.D. Garniere, R. Monot, L. Wöste: Photoionization and fragmentation of alkali metal clusters in supersonic molecular beams. Appl. Phys. B 29, 55 (1982)ADSCrossRefGoogle Scholar
  65. 6.63
    H.-J. Foth, J.M. Gress, Chr. Hertzler, W. Demtröder: Sub-doppler laser spectroscopy of Na3. Z. Physik D 18, 257 (1991)ADSCrossRefGoogle Scholar
  66. 6.64
    V.S. Letokhov: Laser Photoionization Spectroscopy (Academic, Orlando 1987)Google Scholar
  67. 6.65
    G. Hurst, M.G. Payne:in Principles and Applications of Resonance Ionization Spectroscopy, ed. by D.S. Kliger (Academic, New York 1983)Google Scholar
  68. 6.66
    D.H. Parker: Laser Ionization Spectroscopy and Mass Spectrometry. In Ultrasensitive Laser Spectroscopy, ed. by D.S. Kliger (Academic, New York 1983)Google Scholar
  69. 6.67
    V. Beutel, G.L. Bhale, M. Kuhn, W. Demtröder: The ionization potential of Ag2. Chem. Phys. Lett. 185, 313 (1991)ADSCrossRefGoogle Scholar
  70. 6.68
    H.J. Neusser, U. Boesl, R. Weinkauf, E.W. Schlag: High-resolution laser mass spectrometer. Int’l J. Mass Spectrometer 60, 147 (1984)CrossRefGoogle Scholar
  71. 6.69
    J.E. Parks, N. Omeneto (eds.): Resonance Ionization Spectroscopy, Inst. Phys. Conf. Ser. 114 (1990)Google Scholar
  72. D.M. Lübman (ed.): Lasers and Mass Spectrometry (Oxford Univ. Press, London 1990)Google Scholar
  73. 6.70
    P. Peuser, G. Herrmann, H. Rimke, P. Sattelberger, N. Trautmann, W. Ruster, F. Ames, J. Bonn, H.J. Kluge, V. Krönert, E.W. Otten: Trace detection of plutonium by three-step photoionization with a laser system pumped by a copper vapor laser. Appl. Phys. B 38, 249 (1985)ADSCrossRefGoogle Scholar
  74. 6.71
    D. Popescu, M.L. Pascu, C.B. Collins, B.W. Johnson, I. Popescu: Use of space charge amplification techniques in the absorption spectroscopy of Cs and Cs2. Phys. Rev. A 8, 1666 (1973)ADSCrossRefGoogle Scholar
  75. 6.72
    K. Niemax: Spectroscopy using thermionic diode detectors. Appl. Phys. B 38, 1 (1985)CrossRefGoogle Scholar
  76. 6.73
    R. Beigang, W. Makat, A. Timmermann: A thermionic ring diode for high resolution spectroscopy. Opt. Commun. 49, 253 (1984)ADSCrossRefGoogle Scholar
  77. 6.74
    R. Beigang, A. Timmermann: The thermionic annular diode: a sensitive detector for highly excited atoms and molecules. Laser u. Optoelektronik 4, 252 (1984)Google Scholar
  78. 6.75
    D.S. King, P.K. Schenck: Optogalvanic spectroscopy. Laser Focus 14, 50 (March 1978)Google Scholar
  79. 6.76
    J.E.M. Goldsmith, J.E. Lawler: Optogalvanic spectroscopy. Contemp. Phys. 22, 235 (1981)ADSCrossRefGoogle Scholar
  80. 6.77
    B. Barbieri, N. Beverini, A. Sasso: Optogalvanic spectroscopy. Rev. Mod. Phys. 62, 603 (1990)ADSCrossRefGoogle Scholar
  81. 6.78
    K. Narayanan, G. Ullas, S.B. Rai: A two step optical double resonance study of a Fe-Ne hollow cathode discharge using optogalvanic detection. Opt. Commun. 184, 102 (1991)Google Scholar
  82. 6.79
    C.R. Webster, C.T. Rettner: Laser optogalvanic spectroscopy of molecules. Laser Focus 19, 41 (February 1983)Google Scholar
  83. D. Feldmann: Optogalvanic spectroscopy of some molecules in discharges: NH2, NO2, A2 and N2. Opt. Commun. 29, 67 (1979)ADSCrossRefGoogle Scholar
  84. 6.80
    K. Kawakita, K. Fukada, K. Adachi, S. Maeda, C. Hirose: Doppler-free optogalvanic spectrum of He2 (b3 IIg — f3 Δu) transitions. J. Chem. Phys. 82, 653 (1985)ADSCrossRefGoogle Scholar
  85. 6.81
    K. Myazaki, H. Scheingraber, C.R. Vidal: Optogalvanic double-resonance spectroscopy of atomic and molecular discharge, in Laser Spectroscopy VI, ed. by H.P. Weber, W. Lüthy, Springer Ser. Opt. Sci., Vol.40 (Springer, Berlin, Heidelberg 1983) p.93Google Scholar
  86. 6.82
    J.C. Travis: Analytical optogalvanic spectroscopy in flames, in Analytical Laser Spectroscopy, ed. by S. Martellucci, A.N. Chester (Plenum, New York 1985) p.213CrossRefGoogle Scholar
  87. 6.83
    D. King, P. Schenck, K. Smyth, J. Travis: Direct claibration of laser wavelength and bandwidth using the optogalvanic effect in hollow cathode lamps. Appl. Opt. 16, 2617 (1977)ADSCrossRefGoogle Scholar
  88. 6.84
    V. Kaufman, B. Edlen: Reference wavelength from atomic spectra in the range 15 A to 25000 A. J. Phys. Chem. Ref. Data 3, 825 (1974)ADSCrossRefGoogle Scholar
  89. 6.85
    A. Giacchetti, R.W. Stanley, R. Zalubas: Proposed secondary standard wavelengths in the spectrum of thorium. J. Opt. Soc. Am. 60, 474 (1969)ADSCrossRefGoogle Scholar
  90. 6.86
    J.E. Lawler, A.I. Ferguson, J.E.M. Goldsmith, D.J. Jackson, A.L. Schawlow: Doppler-free optogalvanic spectroscopy, in Laser Spectroscopy IV, ed. by H. Walther, K.W. Rothe, Springer Ser. Opt. Sci., Vol.21 (Springer, Berlin, Heidelberg 1979) p.188CrossRefGoogle Scholar
  91. 6.87
    W. Bridges: Characteristics of an optogalvanic effect in cesium and other gas discharge plasmas. J. Opt. Soc. Am. 68, 352 (1978)MathSciNetADSCrossRefGoogle Scholar
  92. 6.88
    R.S. Stewart, J.E. Lawler (eds.): Optogalvanic Spectroscopy (Hilger, London 1991)Google Scholar
  93. 6.89
    R.J. Saykally, R.C. Woods: High resolution spectroscopy of molecular ions. Ann. Rev. Phys. Chem. 32, 403 (1981)ADSCrossRefGoogle Scholar
  94. 6.90
    C.S. Gudeman, R.J. Saykally: Velocity modulation infrared laser spectroscopy of molecular ions. Am. Rev. Phys. Chem. 35, 387 (1984)ADSCrossRefGoogle Scholar
  95. 6.91
    C.E. Blom, K. Müller, R.R. Filgueira: Gas discharge modulation using fast electronic switches. Chem. Phys. Lett. 140, 489 (1987)ADSCrossRefGoogle Scholar
  96. 6.92
    M. Gruebele, M. Polak, R. Saykally: Velocity modulation laser spectroscopy of negative ions. The infrared spectrum of SH- . J. Chem. Phys. 86, 1698 (1987)ADSCrossRefGoogle Scholar
  97. 6.93
    M.B. Radunsky, R.J. Saykally: Electronic absorption spectroscopy of molecular ions in plasmas by dye laser velocity modulation spectroscopy. J. Chem. Phys. 87, 898 (1987)ADSCrossRefGoogle Scholar
  98. 6.94
    K.J. Button (ed.): Infrared and Submillimeter Waves (Academic, New York 1979)Google Scholar
  99. 6.95
    K.M. Evenson, R.J. Saykally, D.A. Jennings, R.E. Curl, J.M. Brown: Far infrared laser magnetic resonance, in Chemical and Biochemical Applications of Lasers, ed. by C.B. Moore (Academic, New York 1980) Chap.VGoogle Scholar
  100. 6.96
    P.B. Davies, K.M. Evenson: Laser magnetic resonance (LMR) spectroscopy of gaseous free radicals, in Laser Spectroscopy II, ed. by S. Haroche, J.C. Pebay-Peyroula, T.W. Hänsch, S.E. Harris, Lect. Notes Phys., Vol.43 (Springer, Berlin, Heidelberg 1975)Google Scholar
  101. 6.97
    W. Urban, W. Herrmann: Zeeman modulation spectroscopy with spin-flip Raman laser. Appl. Phys. 17, 325 (1978)ADSCrossRefGoogle Scholar
  102. 6.98
    K.M. Evenson, C.J. Howard: Laser Magnetic Resonance Spectroscopy. In Laser Spectroscopy. ed. by R.G. Brewer, A. Mooradian (Plenum, New York 1974)Google Scholar
  103. 6.99
    A. Hinz, J. Pfeiffer, W. Bohle, W. Urban: Mid-infrared laser magnetic resonance using the Faraday and Voigt effects for sensitive detection. Mol. Phys. 45, 1131 (1982)ADSCrossRefGoogle Scholar
  104. 6.100
    Y. Ueda, K. Shimoda: Infrared laser Stark spectroscopy, in Laser Spectroscopy II, ed. by S. Haroche, J.C. Pebay-Peyroula, T.W. Hänsch, Lecture Notes Phys., Vol.43 (Springer, Berlin, Heidelberg 1975) p.186CrossRefGoogle Scholar
  105. 6.101
    K. Uehara, T. Shimiza, K. Shimoda: High resolution Stark spectroscopy of molecules by infrared and far infrared masers. IEEE J. QΣ-4, 728 (1968)CrossRefGoogle Scholar
  106. 6.102
    T.E. Gough, R.E. Miller, G. Scoles: Sub-Doppler resolution infrared molecular beam spectroscopy. Faraday Disc. 71, 6 (1981)Google Scholar
  107. 6.103
    L.R. Zink, D.A. Jennings, K.M. Evenson, A. Sasso, M. Inguscio: New techniques in laser Stark spectroscopy. J. Opt. Soc. Am. B 4, 1173 (1987)ADSCrossRefGoogle Scholar
  108. 6.104
    K.M. Evenson, R.J. Saykally, D.A. Jennings, R.F. Curl, J.M. Brown: Far infrared laser magnetic resonance, in Chemical and Biochemical Applications of Lasers, Vol.V, ed. by C.B. Moore (Academic, New York 1980)Google Scholar
  109. 6.105
    M. Inguscio: Coherent atomic and molecular spectroscopy in the far infrared. Physica Scripta 37, 699 (1989)ADSCrossRefGoogle Scholar
  110. 6.106
    W.H. Weber, K. Tanaka, T. Kanaka (feature eds.): Stark and Zeeman techniques in laser spectroscopy. J. Opt. Soc. Am. B 4, 1141 (1987)ADSCrossRefGoogle Scholar
  111. 6.107
    J.L. Kinsey: Laser-induced fluorescence. Ann. Rev. Phys. Chem. 28, 349 (1977)ADSCrossRefGoogle Scholar
  112. 6.108
    M.A. Clyne, I.S. McDermid: Laser-induced fluorescence: electronically excited states of small molecules. Adv. Chem. Phys. 50, 1 (1982)CrossRefGoogle Scholar
  113. 6.109
    J.R. Lakowicz: Topics in Fluorescence Spectroscopy (Plenum, New York 1991)Google Scholar
  114. J.N. Miller: Fluorescence Spectroscopy (Ellis Harwood, Singapore 1991)Google Scholar
  115. O.S. Wolflich (ed.): Fluorescence Spectroscopy (Springer, Berlin, Heidelberg 1992)Google Scholar
  116. 6.110
    C. Schütte: The Theory of Molecular Spectroscopy (North-Holland, Amsterdam 1976)Google Scholar
  117. 6.111
    G. Herzberg: Molecular Spectra and Molecular Structure, Vol.I (Van Nostrand, New York 1950)Google Scholar
  118. 6.112
    G. Höning, M. Cjajkowski, M. Stock, W. Demtröder: High resolution laser spectroscopy of Cs2 . J. Chem. Phys. 71, 2138 (1979)ADSCrossRefGoogle Scholar
  119. 6.113
    C. Amiot, W. Demtröder, C.R. Vidal: High resolution Fourier-spectroscopy and laser spectroscopy of Cs2. J. Chem. Phys. 88, 5265 (1988)ADSCrossRefGoogle Scholar
  120. 6.114
    C. Amiot: Laser-induced fluorescence of Rb2. J. Chem. Phys. 93, 8591 (1990)ADSCrossRefGoogle Scholar
  121. 6.115
    R. Bacis, S. Chunassy, R.W. Fields, J.B. Koffend, J. Verges: High resolution and sub-Doppler Fourier transform spectroscopy. J. Chem. Phys. 72, 34 (1980)ADSCrossRefGoogle Scholar
  122. 6.118
    A.L.G. Rees: The calculation of potential-energy curves from band spectroscopic data. Proc. Phys. Soc., London A 59, 998 (1947)ADSMATHCrossRefGoogle Scholar
  123. 6.117
    O. Klein: Zur Berechnung von Potentialkurven zweiatomiger Moleküle mit Hilfe von Spekraltermen. Z. Physik 76, 226 (1938)ADSCrossRefGoogle Scholar
  124. 6.118
    A.L.G. Rees: The calculation of potential-energy curves from band spectroscopic data. Proc. Phys. Soc., London A 59, 998 (1947)ADSMATHCrossRefGoogle Scholar
  125. 6.119
    R.N. Zare, A.L. Schmeltekopf, W.J. Harrop, D.L. Albritton: J. Mol. Spectrosc. 46, 37 (1973)ADSCrossRefGoogle Scholar
  126. 6.120
    G. Ennen, Ch. Ottinger: Laser fluorescence measurements of the 7LiD (X1 Σ+)-potential up to high vibrational quantum numbers. Chem. Phys. Lett. 36, 16 (1975)ADSCrossRefGoogle Scholar
  127. 6.121
    M. Raab, H. Weickenmeier, W. Demtröder: The dissociation energy of the cesium dimer. Chem. Phys. Lett. 88, 377 (1982)ADSCrossRefGoogle Scholar
  128. 6.122
    C.E. Fellows: The NaLi 11Σ+ (X) electronic ground state dissociation limit. J. Chem. Phys. 94, 5855 (1991)ADSCrossRefGoogle Scholar
  129. 6.123
    A.G. Gaydon: Dissociation Energies and Spectra of Diatomic Molecules (Chapman and Hall, London 1968)Google Scholar
  130. 6.124
    H. Atmanspacher, H. Scheingraber, C.R. Vidal: Laser-induced fluorescence of the MgCa molecule. J. Chem. Phys. 82, 3491 (1985)ADSCrossRefGoogle Scholar
  131. 6.125
    R.J. LeRoy: Molecular Spectroscopy, Specialist Periodical Reports (Chem. Soc., Burlington Hall, London 1973) Vol.1, p.113CrossRefGoogle Scholar
  132. 6.126
    W. Demtröder, W. Stetzenbach, M. Stock, J. Witt: Lifetimes and Franck-Condon factors for the B1 IIu → X1 Σg + -system of Na2. J. Mol. Spectrosc. 61, 382 (1976)ADSCrossRefGoogle Scholar
  133. 6.127
    E.J. Breford, F. Engelke: Laser-induced fluorescence in supersonic nozzle beams: applications to the NaK D1II -→ X1 E and D1 II —→ a3E systems. Chem. Phys. Lett. 53, 282 (1978)ADSCrossRefGoogle Scholar
  134. 6.127a
    E.J. Breford, F. Engelke: Laser-induced fluorescence in supersonic nozzle beams: applications to the NaK D1II -→ X1 E and D1 II —→ a3E systems. J. Chem. Phys. 71, 1949 (1979)CrossRefGoogle Scholar
  135. 6.128
    J. Tellinghuisen, G. Pichler, W.L. Snow, M.E. Hillard, R.J. Exton: Analaysis of the diffuse bands near 6100 A in the fluorescence spectrum of Cs2. Chem. Phys. 50, 313 (1980)CrossRefGoogle Scholar
  136. 6.129
    H. Scheingraber, C.R. Vidal: Discrete and continuous Franck-Condon factors of the Mg2 A1 Σ+ Is system and their J dependence. J. Chem. Phys. 66, 3694 (1977)ADSCrossRefGoogle Scholar
  137. 6.130
    C.A. Brau, J.J. Ewing: Spectroscopy, kinetics and performance of rare-gas halid lasers, in Electronic Transition Lasers ed. by J.I. Steinfeld (MIT Press, Cambridge, Mass. 1976)Google Scholar
  138. 6.131
    D. Eisel, D. Zevgolis, W. Demtröder: Sub-Doppler laser spectroscopy of the NaK-molecule. J. Chem. Phys. 71, 2005 (1979)ADSCrossRefGoogle Scholar
  139. 6.132
    E.V. Condon: Nuclear motions associated with electronic transitions in diatomic molecules. Phys. Rev. 32, 858 (1928)ADSMATHCrossRefGoogle Scholar
  140. 6.133
    J. Tellinghuisen: The McLennan bands of I2: A highly structured continuum. Chem. Phys. Lett. 29, 359 (1974)ADSCrossRefGoogle Scholar
  141. 6.134
    H.J. Vedder, M. Schwarz, H.J. Foth, W. Demtröder:. Analysis of the perturbed NO2 2B22A1 system in the 591.4–592.9 nm region based on sub-Doppler laser spectroscopy. J. Mol. Spectrosc. 97, 92 (1983)ADSCrossRefGoogle Scholar
  142. 6.135
    A. Delon, R. Jost: Laser-induced dispensed fluorescence spectra of jet-cooled NO2 . J. Chem. Phys. 95, 5686 (1991)ADSCrossRefGoogle Scholar
  143. 6.136
    Th. Zimmermann, H.J. Köppel, L.S. Cederbaum, G. Persch, W. Demtröder: Confirmation of random-matrix fluctuations in molecular spectra. Phys. Rev. Lett. 61, 3 (1988)ADSCrossRefGoogle Scholar
  144. 6.137
    K.K. Lehmann, St.L. Coy: The optical spectrum of NO2: Is it or isn’t it chaotic? Ber. Bunsenges. Phys. Chem. 92, 306 (1988)Google Scholar
  145. 6.138
    J.M. Gomez-Llorentl, H. Taylor: Spectra in the chaotic region: A classical analysis for the sodium trimer, J. Chem. Phys. 91, 953 (1989)ADSCrossRefGoogle Scholar
  146. 6.139
    K.L. Kompa: Chemical Lasers, Topics Curr. Chem., Vol.37 (Springer, Berlin, Heidelberg 1975)Google Scholar
  147. 6.140
    P.J. Dagdigian, H.W. Cruse, A. Schultz, R.N. Zare: Product state analysis of BaO from the reactions Ba+CO2 and Ba+02 . J. Chem. Phys. 61, 4450 (1974)ADSCrossRefGoogle Scholar
  148. 6.141
    J.G. Pruett, R.N. Zare: State-to-state reaction rates: Ba+HF (v=0) → BaF (v = 0–12) + H″. J. Chem. Phys. 64, 1774 (1976)ADSCrossRefGoogle Scholar
  149. 6.142
    H.W. Cruse, P.J. Dagdigian, R.N. Zare: Crossed beam reactions of barium with hydrogen halides. Faraday Discuss. Chem. Soc. 55, 277 (1973)Google Scholar
  150. 6.143
    V. Hefter, K. Bergmann: Spectroscopic detection methods, in Atomic and Molecular Beam Methods, Vol.I, ed. by G. Scoles (Oxford Univ. Press, New York 1988) p.193Google Scholar
  151. 6.144
    J.E.M. Goldsmith: Recent advances in flame diagnostics using fluorescence and ionisation techniques, in Laser Spectroscopy VIII, ed. by S. Svanberg, W. Persson, Springer Ser. Opt. Sci., Vol.55 (Springer, Berlin, Heidelberg 1987) p.337Google Scholar
  152. 6.145
    J. Wolfrum (feature ed.): Laser diagnostics in combustion. Appl. Phys. B 50, 439 (1990)ADSCrossRefGoogle Scholar
  153. 6.146
    T.P. Hughes: Plasma and Laser Light (Hilger, Bristol 1975)Google Scholar
  154. 6.147
    M. Bellini, P. DeNatale, G. DiLonardo, L. Fusina, M. Inguscio, M. Prevedelli: Tunable far infrared spectroscopy of 16O3 ozone. J. Mol. Spectrosc. 152, 256 (1992)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • Wolfgang Demtröder
    • 1
  1. 1.Fachbereich PhysikUniversität KaiserslauternKaiserslauternGermany

Personalised recommendations