Advertisement

Time-Resolved Laser Spectroscopy

  • Wolfgang Demtröder

Abstract

The investigation of fast processes, such as radiative or collision-induced decays of excited levels, isomerization of excited molecules or the relaxation of an optically pumped system towards thermal equilibrium opens the way to study in detail the dynamic properties of excited atoms and molecules. A thorough knowledge of dynamical processes is of fundamental importance for many branches of physics, chemistry or biology. Examples are predissociation rates of excited molecules, femtosecond chemistry or the understanding of the visual process and its different steps from the photoexcitation of rhodopsin molecules in the retina cells to the arrival of electrical nerve pulses in the brain.

Keywords

Pump Pulse Optical Pulse Probe Pulse Saturable Absorber Femtosecond Pulse 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 11.1
    J. Herrmann, B. Wilhelmi: Lasers for Ultrashort Light Impulses (North Holland, Amsterdam 1987)Google Scholar
  2. 11.2
    S.A. Akhmanov, V.A. Vysloukhy, A.S. Chirikin: Optics of Femtosecond Laser Pulses (AIP, New York 1992)Google Scholar
  3. 11.3
    V. Brückner, K.H. Felle, V.W. Grummt: Application of Time-Resolved Optical Spectroscopy (Elsevier, Amsterdam 1990)Google Scholar
  4. 11.4
    J.G. Fujimoto (feature ed.): Special issue on ultrafast phenomena. IEEE J. QE-25, 2415–2682 (1989)MathSciNetGoogle Scholar
  5. 11.5
    G.R. Fleming: Sub-picosecond spectroscopy. Ann. Rev. Phys. Chem. 37, 81 (1986)ADSGoogle Scholar
  6. 11.6
    J. De Maria, D.A. Stetsen, W.H. Glenn Jr.: Ultrashort light pulses. Science 156, 1557 (1967)ADSGoogle Scholar
  7. 11.7
    W.H. Lowdermilk: Technology of bandwidth-limited ultrashort pulse generation, in Laser Handbook, ed. by M.L. Stitch (North Holland, Amsterdam 1979) Vol.3, Chap.B1, pp.361–420Google Scholar
  8. 11.8
    L.P. Christov: Generation and propagation of ultrashort optical pulses. Progress in Optics 24, 201 (North Holland, Amsterdam 1991)Google Scholar
  9. 11.9
    W. Kaiser (ed.): Ultrashort Laser Pulses, 2nd edn., Topics Appl. Phys., Vol.60 (Springer, Berlin, Heidelberg 1993)Google Scholar
  10. 11.9a
    S.L. Shapiro (ed.): Ultrashort Light Pulses. Topics Appl. Phys., Vol.18 (Springer, Berlin, Heidelberg 1977)Google Scholar
  11. 11.10
    Picosecond/Ultrashort Phenomena J-IX, Proc. Int’l Confs. 1978–1994 Picosecond Phenomena I, ed. by K.V. Shank, E.P. Ippen, S.L. Shapiro, Springer Ser. Chem. Phys., Vol.4 (Springer, Berlin, Heidelberg 1978)Google Scholar
  12. 11.10a
    Picosecond Phenomena II, ed. by R.M. Hochstrasser, W. Kaiser, C.V. Shank, Springer Ser. Chem. Phys., Vol.14 (Springer, Berlin, Heidelberg 1980)Google Scholar
  13. 11.10b
    Picosecond Phenomena III, ed. by K.B. Eisenthal, R.M. Hochstrasser, W. Kaiser, A. Laubereau, Springer Ser. Chem. Phys., Vol.38 (Springer, Berlin, Heidelberg 1982)Google Scholar
  14. 11.10c
    Ultrashort Phenomena IV, ed. by D.H. Auston, K.B. Eisenthal, Springer Ser. Chem. Phys., Vol.38 (Springer, Berlin, Heidelberg 1984)Google Scholar
  15. 11.10d
    Ultrashort Phenomena V, ed. by G.R. Fleming, A.E. Siegman, Springer Ser. Chem. Phys., Vol.46 (Springer, Berlin, Heidelberg 1986)Google Scholar
  16. 11.10e
    Ultrashort Phenomena VI, ed. by T. Yajima, K. Yoshihara, C.B. Harris, S. Shionoya, Springer Ser. Chem. Phys., Vol.48 (Springer, Berlin, Heidelberg 1988)Google Scholar
  17. 11.10f
    Ultrashort Phenomena VII, ed. by E. Ippen, C.B. Harris, A. Zewail, Springer Ser. Chem. Phys., Vol.53 (Springer, Berlin, Heidelberg 1990)Google Scholar
  18. 11.10g
    Ultrafast Phenomena VIII, ed. by J.-L. Martin, A. Migus, G.A. Mourou, A.H. Zewail, Springer Ser. Chem. Phys., Vol.55 (Springer, Berlin, Heidelberg 1993)Google Scholar
  19. 11.10h
    Ultrafast Phenomena IX, ed. by P.F. Barbara, W.H. Knox, G.A. Mourou, A.H. Zewail, Springer Ser. Chem. Phys., Vol.60 (Springer, Berlin, Heidelberg 1994)Google Scholar
  20. 11.11
    T.R. Gosnel, A.J. Taylor (eds.): Ultrafast Laser Technology. SPIE Proc. 44 (1991)Google Scholar
  21. 11.12
    E. Niemann, M. Klenert: A fast high-intensity-pulse light source for flash-photolysis. Appl. Opt. 7, 295 (1968)ADSGoogle Scholar
  22. 11.13
    L.S. Marshak: Pulsed Light Sources (Consultants Bureau, New York 1984)Google Scholar
  23. 11.14
    P. Richter, J.D. Kimel, G.C. Moulton: Pulsed nitrogen laser: dynamical UV behaviour. Appl. Opt. 15, 756 (1976)ADSGoogle Scholar
  24. 11.15
    D. Ross: Lasers Light Amplifiers and Oscillators (Academic, London 1969)Google Scholar
  25. 11.16
    A.E. Siegman: Lasers (University Science Books, Mill Valey, CA 1986)Google Scholar
  26. 11.17
    F.P. Schäfer (ed.): Dye Lasers, 3rd edn., Topics Appl. Phys., Vol.1 (Springer, Berlin, Heidelberg 1990)Google Scholar
  27. 11.17a
    F.J. Duarte (ed.): High Power Dye Lasers, Springer Ser. Opt. Sci., Vol.65 (Springer Berlin, Heidelberg 1991)Google Scholar
  28. 11.18
    F.J. McClung, R.W. Hellwarth: Characteristics of giant optical pulsation from ruby. IEEE Proc. 51, 46 (1963)Google Scholar
  29. 11.19
    R.B. Kay, G.S. Waldman: Complete solutions to the rate equations describing Q-spoiled and PTM laser operation. J. Appl. Phys. 36, 1319 (1965)ADSGoogle Scholar
  30. 11.20
    O. Kafri, S. Speiser, S. Kimel: Doppler effect mechanism for laser Q-switching with a rotating mirror. IEEE J. QE-7, 122 (1971)Google Scholar
  31. 11.21
    G.H.C. New: The generation of ultrashort light pulses. Rpt. Progr. Phys. 46, 877 (1983)ADSGoogle Scholar
  32. 11.22
    E. Hartfield, B.J. Thompson: Optical modulators, in Handbook of Optics, ed. by W. Driscal, W. Vaughan (McGraw Hill, New York 1974)Google Scholar
  33. 11.23
    W.E. Schmidt: Pulse stretching in a Q-switched Nd:YAG laser. IEEE J. QE-16, 790 (1980)Google Scholar
  34. 11.24
    Spectra Physics: Instruction Manual on Model 344S Cavity DumperGoogle Scholar
  35. 11.25
    A. Yariv: Quantum Electronics (Wiley, New York 1975)Google Scholar
  36. 11.26
    P.W. Smith, M.A. Duguay, E.P. Ippen: Mode-locking of lasers. Progr. Quantum Electron., Vol.3 (Pergamon, Oxford 1974)Google Scholar
  37. 11.27
    M.S. Demokan: Mode-Locking in Solid State and Semiconductor-Lasers (Wiley, New York 1982)Google Scholar
  38. 11.28
    W. Koechner: Solid-State Laser Engineering, 4th edn, Springer Ser. Opti. Sci, Vol. 1 (Springer, Berlin, Heidelberg 1996)Google Scholar
  39. 11.29
    C.V. Shank, E.P. Ippen: Mode-locking of dye lasers. In Dye Lasers, 3rd ed., ed. by F.P. Schäfer (Springer, Berlin, Heidelberg 1990) Chap.4Google Scholar
  40. 11.30
    W. Demtröder, W. Stetzenbach, M. Stock, J. Witt: Lifetimes and Franck-Condon-factors for the B-X-system of Na2. J. Mol. Spectrosc. 61, 382 (1976)ADSGoogle Scholar
  41. 11.31
    P. Heinz, M. Fickenscher, A. Lauberau: Elektro-optic gain control and cavity dumping of a Nd: glass laser with active passive mode-locking. Opt. Commun. 62, 343 (1987)ADSGoogle Scholar
  42. 11.32
    W. Rudolf: Die zeitliche Entwicklung von Mode-Locking-Pulsen aus dem Rauschen. Dissertation, Fachbereich Physik, Universität Kaiserslautern (1980)Google Scholar
  43. 11.33
    W. Demtröder, W. Stetzenbach, M. Stock, J. Witt: Lifetimes and Franck-Condon-factors for the B-Ot system of Na2. J. Mol. Spectrosc. 61, 382 (1976)ADSGoogle Scholar
  44. 11.34
    H.A. Haus: Waves and Fields in Optoelectronics (Prentice Hall, New York 1982)Google Scholar
  45. 11.35
    R. Wilbrandt, H. Weber: Fluctuations in mode-locking threshold due to statistics of spontaneous emission. IEEE J. QE-11, 186 (1975)Google Scholar
  46. 11.36
    B. Kopnarsky, W. Kaiser, K.H. Drexhage: New ultrafast saturable absorbers for Nd:lasers. Opt. Commun. 32, 451 (1980)ADSGoogle Scholar
  47. 11.37
    E.P. Ippen, C.V. Shank, A. Dienes: Passive mode-locking of the cw dye laser. Appl. Phys. Lett. 21, 348 (1972)ADSGoogle Scholar
  48. 11.38
    G.R. Flemming, G.S. Beddard: CW mode-locked dye lasers for ultrashort spectroscopic studies. Opt. Laser Technol. 10, 257 (1978)ADSGoogle Scholar
  49. 11.39
    D.J. Bradley: Methods of generations, in Ultrashort Light Pulses, ed, by S.L. Shapiro, Topics Appl. Phys., Vol.18 (Springer, Berlin, Heidelberg 1977) Chap.2Google Scholar
  50. 11.40
    P.W. Smith: Mode-locking of lasers. Proc. IEEE 58, 1342 (1970)Google Scholar
  51. 11.41
    L. Allen, D.G.C. Jones: Mode-locking of gas lasers. Progress in Optics 9, 179 (North-Holland, Amsterdam 1971)Google Scholar
  52. 11.42
    Ch.K. Chan: Synchroneously pumped dye lasers. Laser Techn. Bulletin, 8, Spectra Physics (June 1978)Google Scholar
  53. 11.43
    J. Kühl, H. Klingenberg, D. von der Linde: Picosecond and subpicosecond pulse generation in synchroneously pumped mode-locked CW dye lasers. Appl. Phys. 18, 279 (1979)ADSGoogle Scholar
  54. 11.44
    G.W. Fehrenbach, K.J. Gruntz, R.G. Ulbrich: Subpicosecond light pulses from synchroneously pumped mode-locked dye lasers with composite gain and absorber medium. Appl. Phys. Lett. 33, 159 (1978)ADSGoogle Scholar
  55. 11.45
    D. Kühlke, V. Herpers, D. von der Linde: Characteristics of a hybridly mode-locked CW dye lasers. Appl. Phys. B38, 159 (1978)Google Scholar
  56. 11.46
    R.H. Johnson: Characteristics of acousto-optic cavity dumping in a mode-locked laser. IEEE J. QE-9, 255 (1973)Google Scholar
  57. 11.47
    B. Couillaud, V. Fossati-Bellani: Mode locked lasers and ultrashort pulses I and II. Laser and Applications 4, 79 (January 1985) and 91 (February 1985)Google Scholar
  58. 11.48
    R.L. Fork, C.H. BritoCruz, P.C. Becker, C.V. Shank: Compression of optical pulses to six femtoseconds by using cubic phase compensation. Opt. Lett. 12, 483 (1987)ADSGoogle Scholar
  59. 11.48a
    W.H. Knox, R.S. Knox, J.F. Hoose, R.N. Zare: Observation of the O-fs pulse. Opt. & Photon. News 1, 44 (April 1990)ADSGoogle Scholar
  60. 11.49
    R.L. Fork, O.E. Martinez, J.P. Gordon: Negative dispersion using pairs of prisms. Opt. Lett. 9, 150 (1984)ADSGoogle Scholar
  61. 11.49a
    D. Kühlke: Calculation of the colliding pulse mode locking in CW dye ring lasers. IEEE J. QE-19, 526 (1983)Google Scholar
  62. 11.50
    S. DeSilvestri, P. Laporta, V. Magni: Generation and applications of femtosecond laser-pulses. Europhys. News 17, 105 (Sept. 1986)Google Scholar
  63. 11.51
    R.L. Fork, B.T. Greene, V.C. Shank: Generation of optical pulses shorter than 0.1 ps by colliding pulse mode locking. Appl. Phys. Lett. 38, 671 (1981)ADSGoogle Scholar
  64. 11.52
    K. Naganuma, K. Mogi: 50 fs pulse generation directly from a colliding-pulse mode-locked Ti: Supphire laser using an antiresonant ring mirror. Opt. Lett. 16, 738 (1991)ADSGoogle Scholar
  65. 11.53
    M.C. Nuss, R. Leonhardt, W. Zinth: Stable operation of a synchroneously pumped colliding pulse mode-locking ring dye laser. Opt. Lett. 10, 16 (1985)ADSGoogle Scholar
  66. 11.54
    P.K. Benicewicz, J.P. Roberts, A.J. Taylor: Generation of 39 fs pulses and 815 nm with a synchroneously pumped mode-locked dye laser. Opt. Lett. 16, 925 (1991)ADSGoogle Scholar
  67. 11.55
    G.P. Agrawal: Nonlinear Fiber Optics (Academic, London 1989)Google Scholar
  68. 11.56
    S.A. Akhmanov, A.P. Sukhonukov, A.S. Chirkin: Nonstationary nonlinear optical effects and ultrashort light pulse formation. IEEE J. QE-4, 578 (1968)Google Scholar
  69. 11.56a
    W.J. Tomlinson, R.H. Stollen, C.V. Shank: Compression of optical pulses chirped by self-phase modulation in fibers. J. Opt. Soc. Am B 1, 139 (1984)ADSGoogle Scholar
  70. 11.57
    D. Marcuse: Pulse duration in single-mode fibers. Appl. Opt. 19, 1653 (1980)ADSGoogle Scholar
  71. 11.58
    E.B. Treacy: Optical pulse compression with diffraction gratings. IEEE J. QE-5, 454 (1969)Google Scholar
  72. 11.59
    C.V. Shank, R.L. Fork, R. Yen, R.H. Stolen, W.J. Tomlinson: Compression of femtosecond optical pulses. Appl. Phys. Lett. 40, 761 (1982)ADSGoogle Scholar
  73. 11.60
    J.G. Fujiimoto, A.M. Weiners, E.P. Ippen: Generation and measurement of optical pulses as short as 16 fs. Appl. Phys. Lett. 44, 832 (1984)ADSGoogle Scholar
  74. 11.61
    J.E. Midwinter: Optical Fibers for Transmission (Wiley, New York 1979)Google Scholar
  75. 11.62
    E.G. Neumann: Single-Mode Fibers, Springer Ser. Opt. Sci., Vol.57 (Springer, Berlin, Heidelberg 1988)Google Scholar
  76. 11.63
    V.E. Zakharov, A.B. Shabat: Exact theory of two-dimensional self-focussing and one-dimensional self-modulation of waves in nonlinear media. Sov. Phys. -JETP 37, 823 (1973)ADSGoogle Scholar
  77. 11.64
    A. Hasegawa: Optical Solitons in Fibers, 2nd edn. (Springer, Berlin, Heidelberg 1990)Google Scholar
  78. 11.65
    L.F. Mollenauer, R.H. Stolen: The soliton laser. Opt. Lett. 9, 13 (1984)ADSGoogle Scholar
  79. 11.66
    F.M. Mitschke, L.F. Mollenauer: Stabilizing the soliton laser. IEEE J. QE-22, 2242 (1986)Google Scholar
  80. 11.67
    F.M. Mitschke, L.F. Mollenauer: Ultrashort pulses from the soliton laser. Opt. Lett. 12, 407 (1987)ADSGoogle Scholar
  81. 11.68
    F.M. Mitschke: Solitonen in Glasfasern. Laser und Optoelektronik 4, 393 (1987)Google Scholar
  82. 11.69
    B. Wilhelmi, W. Rudolph (eds.): Light Pulse Compression (Harwood Academic, Chur 1989)Google Scholar
  83. 11.70
    R.W. Schoenlein, J.Y. Gigot, M.T. Portella, C.V. Shank: Generation of blue-green 10 fs pulses using an excimer pumped dye amplifier. Appl. Phys. Lett. 58, 801 (1991)ADSGoogle Scholar
  84. 11.71
    C.V. Shank, E.P. Ippen: Subpicosecond kilowatt pulses from a mode-locked CW dye laser. Sov. Phys. — JETP 34, 62 (1972)Google Scholar
  85. 11.72
    R.L. Fork, C.V. Shank, R.T. Yen: Amplification of 70-fs optical pulses to Gigawatt powers. Appl. Phys. Lett. 41, 233 (1982)ADSGoogle Scholar
  86. 11.73
    S.R. Rotman, C. Roxlo, D. Bebelaar, T.K. Yee, M.M. Salour: Generation, stabilization and amplification of subpicosecond pulses. Appl. Phys. B 28, 319 (1982)ADSGoogle Scholar
  87. 11.74
    E. Salin, J. Squier, G. Mourov, G. Vaillancourt: Multi-kilohertz Ti: Al2O3 amplifier for high power femtosecond pulses, Opt. Lett. 16, 1964 (1991)ADSGoogle Scholar
  88. 11.75
    G. Sucha, D.S. Chenla: Kilohertz-rate continuum generation by amplification of femtosecond pulses near 1.5 jum. Opt. Lett. 16, 1177 (1991)ADSGoogle Scholar
  89. 11.76
    A. Sullivan, H. Hamster, H.C. Kapteyn, S. Gordon, W. White, H. Nathel, R.J. Blair and R.W. Falcow: Multiterawatt, 100 fs laser. Opt. Lett. 16, 1406 (1991)ADSGoogle Scholar
  90. 11.77
    Th. Elsässer, M.C. Nuss: Femtosecond pulses in the mid-infrared generated by downconversion of a travelling-wave dye laser. Opt. Lett. 16, 411 (1991)ADSGoogle Scholar
  91. 11.78
    J. Heling, J. Kuhl: Generation of femtosecond pulses by travelling-wave amplified spontaneous emission. Opt. Lett. 14, 278 (1991)ADSGoogle Scholar
  92. 11.79
    F.P. Schäfer: Neue Methoden zur Erzeugung von ultra-kurzen Laserimpulsen. Laser und Optoelektronik 16, 95 (1984)Google Scholar
  93. 11.80
    W. Schade, B. Garbe, V. Helbig: Temperature tuned distributed feedback dye laser with high repetition rate. Appl. Opt. 29, 3950 (1990)ADSGoogle Scholar
  94. 11.81
    Zs. Bor, A. Müller, B. Racz, F.P. Schäfer: Ultrashort pulse generation by distributed feedback dye lasers I & II. Appl. Phys. B 27, 9 & 77 (1982)ADSGoogle Scholar
  95. 11.82
    P. Simon, S. Szatmari, F.P. Schäfer: Generation of 30 fs pulses tunable over the visible spectrum. Opt. Lett. 16, 1569 (1991)ADSGoogle Scholar
  96. 11.83
    S. Svanberg et al.: Applications of terrawatt lasers, in Laser Spectroscopy XI, ed. by L. Bloomfield, Th. Gallagher, D. Lanson (AIP, New York 1993)Google Scholar
  97. 11.84
    R.R. Alfano (ed.): The Supercontinuum Laser Source (Springer, New York 1989)Google Scholar
  98. 11.84a
    J.D. Kmetec, J.I. MacKlin, J.F. Young: 0.5 TW, 125 fs Ti:Sapphire laser. Opt. Lett. 16, 1001 (1991)ADSGoogle Scholar
  99. 11.85
    C.H. Lee: Picosecond Optoelectronic Devices (Academic, New York 1984)Google Scholar
  100. 11.86
    Hamamatsu: FESCA (Femtosecond Streak camera 2908, information sheet, August 1988)Google Scholar
  101. 11.87
    F.J. Leonberger, C.H. Lee, F. Capasso, H. Morkoc (eds.): Picosecond Electronics and Optoelectronics II, Springer Ser. Electron. Photon., Vol.28 (Springer, Berlin, Heidelberg 1987)Google Scholar
  102. 11.88
    D.J. Bradley: Methods of generation, in Ultrashort Light Pulses, ed. by S.L. Shapiro, Topics Appl. Phys., Vol.18 (Springer, Berlin, Heidelberg 1977) Chap.2Google Scholar
  103. 11.89
    D.J. Bowley: Measuring ultrafast pulses. Laser and Optoelectronics 6, 81 (1987)Google Scholar
  104. 11.90
    H.E. Rowe, T. Li: Theory of two-photon measurement of laser output. IEEE J. QE-6, 49 (1970)Google Scholar
  105. 11.91
    H.P. Weber: Method for pulse width measurement of ultrashort light pulses, using nonlinear optics. J. Appl. Phys. 38, 2231 (1967)ADSGoogle Scholar
  106. 11.92
    J.A. Giordmaine, P.M. Rentze, S.L. Shapiro, K.W. Wecht: Two-photon Excitation of fluorescence by picosecond light pulses. Appl. Phys. Lett. 11, 216 (1967); see also [11.26]ADSGoogle Scholar
  107. 11.93
    W.H. Glenn: Theory of the two-photon absorption-fluorescence method of pulse width measurement. IEEE J. QE-6, 510 (1970)Google Scholar
  108. 11.94
    E.P. Ippen, C.V. Shank: Techniques for measurement, in Ultrashort Light Pulses, ed. by S.L. Shapiro, Topics Appl. Phys., Vol.18 (Springer, Berlin, Heidelberg 1977) Chap.3Google Scholar
  109. 11.95
    D.H. Auston: Higher order intensity correlation of optical pulses. IEEE J. QE-7, 465 (1971)Google Scholar
  110. 11.96
    A. Unsold, B. Baschek: The New Cosmos, 5th edn. (Springer, Berlin, Heidelberg 1991)Google Scholar
  111. 11.97
    R.E. Imhoff, F.H. Read : Measurements of lifetimes of atoms, moleculesGoogle Scholar
  112. 11.98
    M.C.E. Huber, R.J. Sandeman: The measurement of oscillator strengths. Rpt. Progr. Phys. 49, 397 (1986)ADSGoogle Scholar
  113. 11.99
    J.R. Lakowvicz, B.P. Malivatt: Construction and performance of a variable-frequency phase-modulation fluorometer. Biophys. Chemistry 19, 13 (1984) und Biophys. J. 46, 397 (1986)Google Scholar
  114. 11.100
    J. Carlson: Accurate time resolved laser spectroscopy on sodium and bismuth atoms. Z. Physik D 9, 147 (1988)ADSGoogle Scholar
  115. 11.101
    D.V. O’Connor, D. Phillips: Time Correlated Single Photon Counting (Academic, New York 1984)Google Scholar
  116. 11.102
    W. Wien: Über Messungen der Leuchtdauer der Atome und der Dämpfung der Spektrallinien. Ann. Physik 60, 597 (1919)ADSGoogle Scholar
  117. 11.103
    P. Hartmetz, H. Schmoranzer: Lifetime and absolute transition probabilities of the 2P10 (3S1) level of Nel by beam-gas-dye laser spectroscopy. Z. Physik A 317, 1 (1984)ADSGoogle Scholar
  118. 11.104
    D. Schulze-Hagenest, H. Harde, W. Brandt, W. Demtröder: Fast beam-spec-troscopy by combined gas-cell laser excitation for cascade free measurements of highly excited states. Z. Physik A 282, 149 (1977)ADSGoogle Scholar
  119. 11.105
    L. Ward, O. Vogel, A. Arnesen, R. Hallin, A. Wännström: Accurate experimental lifetimes of excited levels in Nail, Sd II. Phys. Scripta 31, 149 (1985)ADSGoogle Scholar
  120. 11.106
    H. Schmoranzer, P. Hartmetz, D. Marger, J. Dudda: Lifetime measurement of the B2E + (v=0) state of 14N2 + by the beam-dye-laser method. J. Phys. B 22, 1761 (1989s)ADSGoogle Scholar
  121. 11.107
    A. Arnesen, A. Wännström, R. Hallin, C. Nordling, O. Vogel: Lifetime in KII with the beam-laser method. J. Opt. Soc. Am. B 5, 2204 (1988)ADSGoogle Scholar
  122. 11.108
    A. Lauberau, W. Kaiser: Picosecond investigations of dynamic processes in polyatomic molecules and liquids, in Chemical and Biochemical Applications of Lasers II, ed. by C.B. Moore (Academic, New York 1977)Google Scholar
  123. 11.109
    W. Zinth, M.C. Nuss, W. Kaiser: A picosecond Raman technique with resolution four times better than obtained by spontaneous Raman spectroscopy. [Ref.11.72c, p.279]Google Scholar
  124. 11.110
    A. Seilmeier, W. Kaiser: Ultrashort intramolecular and intermolecular vibrational energy transfer of polyatomic molecules in liquids. [Ref.11.72c, p.279]Google Scholar
  125. 11.111
    W. Zinth, W. Holzapfel, R. Leonhardt: Femtosecond depharing processes of molecular vibrations, in [Ref.11.10, VI, p.401 (1988)]Google Scholar
  126. 11.112
    G. Angel, R. Gagel, A. Lauberau: Vibrational dynamics in the S x and S0 states of dye molecules studied separately by femtosecond polarization spectroscopy, in [Ref.11.10, VI, p.467 (1988)]Google Scholar
  127. 11.113
    F.J. Duarte (ed.): High-Power Dye Lasers, Springer Ser. Opt. Sci., Vol.65 (Springer, Berlin, Heidelberg 1991)Google Scholar
  128. 11.114
    W. KDtt, K. Seibert, H. Kurz: High density femtosecond excitation of hot carrier distributions in InP and InGaAs, in [Ref.11.10, VI, p.233 (1988)]Google Scholar
  129. 11.115
    W.Z. Lin, R.W. Schoenlein, M.J. LaGasse, B. Zysset, E.P. Ippen, J.G. Fujim-oto: Ultrafast scattering and energy relaxation of optically excited carriers in GaAs and AlGaAs, in [Ref.l 1.10, VI, p.210 (1988)]Google Scholar
  130. 11.116
    L.R. Khundkar, A.H. Zewail: Ultrafast molecular reaction dynamics in realtime. Ann. Rev. Phys. Chem. 41, 15 (1990)ADSGoogle Scholar
  131. 11.116a
    A.H. Zewail (ed.): Femtochemistry: Ultrafast Dynamics of the Chemical Bond I and II (World Scientific, Singapore 1994)Google Scholar
  132. 11.117
    A.H. Zewail: Femtosecond transition-state dynamics. Faraday Discuss. Chem. Soc. 91, 207 (1991)Google Scholar
  133. 11.118
    T. Baumert, M. Grosser, R. Thalveiser, G. Gerber: Femtosecond time-resolved molecular multiphoton ionisation: The Na2 system. Phys. Rev. Lett. 67, 3753 (1991)ADSGoogle Scholar
  134. 11.119
    T. Baumert, B. Bühler, M. Grosser, R. Thalweiser, V. Weiss, E. Wiedemann, R. Gerber: Femtosecond time-resolved wave packed motion in molecular multi-photon ionization and fragmentation. J. Phys. Chem. 95, 8103 (1991)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • Wolfgang Demtröder
    • 1
  1. 1.Fachbereich PhysikUniversität KaiserslauternKaiserslauternGermany

Personalised recommendations