Tunable Coherent Light Sources

  • Wolfgang Demtröder
Part of the Springer Series in Chemical Physics book series (CHEMICAL, volume 5)


In this chapter experimental realizations of some tunable coherent sources are discussed which are of particular relevance for spectroscopic applications. In the different spectral regions different tuning methods have been developed which will be illustrated by several examples. While semiconductor lasers, spin-flip Raman lasers, and optical parametric oscillators are to date the most widely used tunable infrared sources, the dye laser in its various modifications is by far the most important tunable laser in the visible region. The development of color center lasers seems to be very promising for achieving a tunable device in the near infrared, which competes in its outstanding properties with the dye laser. In the ultraviolet region the last years have brought great progress in the development of new types of lasers as well as in the generation of coherent uv radiation by frequency doubling or mixing techniques. Meanwhile the whole spectral range from the far infrared to the vacuum ultraviolet can be covered by a variety of tunable coherent sources.


Pump Power Pump Beam Tuning Range Phase Match Pump Wave 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 7.1
    M.J. Colles, C.R. Pidgeon: Tunable lasers. Rep. Prog. Phys. 38, 329 (1975)ADSGoogle Scholar
  2. 7.1a
    R.S. McDowell: “High Resolution Infrared Spectroscopy with Tunable Lasers”, in Advances in Infrared and Raman Spectroscopy, Vol. 5, ed. by R.J.H. Clark, R.E. Hester (Heyden, London 1978)Google Scholar
  3. 7.2
    E.D. Hinkley, K.W. Nill, F.A. Blum: “Infrared Spectroscopy with Tunable Lasers”, in Ref. 1.12, p. 127Google Scholar
  4. 7.3
    R.W. Campbell, F.M. Mims, III: Semiconductor Lasers (Howard W. Sams, Indianapolis 1972)Google Scholar
  5. 7.4
    A. Mooradian: “High Resolution Tunable Infrared Lasers”, in Very High Resolution Spectroscopy, ed. by R.A. Smith (Academic Press, London 1976)Google Scholar
  6. 7.5
    A. Mooradian: “Raman Spectroscopy of Solids”, in Laser Handbook, ed. by F.T. Arrecchi, E.O. Schulz-Dubois (North-Holland, Amsterdam 1972) p. 1409Google Scholar
  7. 7.5a
    C. Vourmard: External-cavity controlled 32 MHz narrow band cw GaAs-diode laser. Opt. Lett. 1, 61 (1977)ADSGoogle Scholar
  8. 7.6
    H.C. Lasey, M.B. Panisch: Heterostructure Lasers I and II (Academic Press, New York 1978)Google Scholar
  9. 7.7
    J.J. Hsieh, J.A. Rossi, J.P. Donnelly: Room-temperature cw operation of Ga In As P/In P double heterostructure diode lasers emitting at 1.1 μm. Appl. Phys. Lett. 28, 709 (1976)ADSGoogle Scholar
  10. 7.8
    I. Melngailis, A. Mooradian: “Tunable Semiconductor Diode Lasers and Applications”, in Laser Applications in Optics and Spectroscopy, ed. by S. Jacobs, M. Sargent, M. Scully, J. Scott (Addison-Wesley, New York 1975) p. 1 ffGoogle Scholar
  11. 7.9
    J.F. Scott: “Spin-Flip Light Scattering and Spin-Flip Lasers”, in Laser Applications in Optics and Spectroscopy, ed. by S. Jacobs, M. Sargent, M. Scully, J.F. Scott (Addison-Wesley, New York 1975) p. 123 ffGoogle Scholar
  12. 7.9a
    S.D. Smith, R.B. Dennis, R.G. Harrison: The spin flip Raman laser. Prog. Quantum Electron. 5, 205 (1977)ADSGoogle Scholar
  13. 7.10
    H.G. Häfele: Spin flip Raman laser. Appl. Phys. 5, 97 (1974)ADSGoogle Scholar
  14. 7.11
    S.R. Brueck, A. Mooradian: Frequency stabilization and fine-tuning characteristics of a cw InSb spin-flip laser. IEEE J. QE-10, 634 (1974)Google Scholar
  15. 7.12
    S.D. Smith: “High Resolution Infrared Spectroscopy: The Spin-Flip Raman Lasers”, in Ref. 1.14, p. 13 ffGoogle Scholar
  16. 7.13
    M.A. Guerra, S.R.J. Brueck, A. Mooradian: Gradient-field permanentmagnet spin-flip laser. IEEE J. QE-9, 1157 (1973)Google Scholar
  17. 7.14
    R.J. Butcher, R.B. Dennis, S.D. Smith: The tunable spin-flip Raman laser. II. Continuous wave molecular spectroscopy. Proc. Roy. Soc., London A344, 541 (1975)ADSGoogle Scholar
  18. 7.15a
    H.J. Gerritsen, M.E. Heller: High resolution tuned-laser spectroscope. Appl. Opt., Suppl. on Chem. Lasers 73 (1965)Google Scholar
  19. 7.15b
    H.J. Gerritsen: “Tuned Laser Spectroscopy of Organic Vapors”, in Physics of Quantum Electronics, ed. byP.L. Kelley, B. Lax, P.E. Tannenwald (McGraw-Hill, New York 1966) p. 581Google Scholar
  20. 7.16
    T. Kasuya: Infrared absorption spectrometer with a broad-band tunable He-Xe-laser. Appl. Phys. 3, 223 (1974)ADSGoogle Scholar
  21. 7.17
    F. O’Neill, W.T. Whitney: Continuously tunable multiatmosphere N20 and CO2 lasers. Appl. Phys. Lett. 28, 539 (1976)ADSGoogle Scholar
  22. 7.18
    V.N. Bagratashvili, I.N. Knyazev, V.S. Letokhov, V.V. Lobko: Resonance excitation of C2H4-molecule. Luminescence by pulsed high pressure continuously tunable CO2-laser. Opt. Commun. 14, 426 (1975)ADSGoogle Scholar
  23. 7.19
    N.W. Harris, F. O’Neill, W.T. Whitney: Wide-band interferometric tuning of a multiatmosphere CO2-laser. Opt. Commun. 16, 57 (1976)ADSGoogle Scholar
  24. 7.20
    F. O’Neill, W.T. Whitney: A high power tunable laser for the 9–12.5 pm spectral range. Appl. Phys. Lett. 31, 270 (1977)ADSGoogle Scholar
  25. 7.21
    P.W. Smith: “High Pressure Waveguide Gas Lasers”, in Ref. 1.8, p. 247Google Scholar
  26. 7.22
    R.L. Abrams: “Wide-band Waveguides CO2-Lasers”, in Ref. 1.8, p. 263Google Scholar
  27. 7.23
    W.B. Fowler: “Electronic States and Optical Transitions of Color Centers”, in Physics of Color Centers, ed. by W.B. Fowler (Academic Press, New York 1968)Google Scholar
  28. 7.24
    F. Lüty: “FA-Centers in Alkali Halide Crystals”, in Physics of Color Centers, ed. by W.B. Fowler (Academic Press, New York 1968)Google Scholar
  29. 7.25
    L.F. Mollenhauer, D.H. Olsen: Broadly tunable lasers using color centers. J. Appl. Phys. 46, 3109 (1975) and in Ref. 1.9, p. 227ADSGoogle Scholar
  30. 7.26
    G. Litfin: “Color Center Lasers”. Intern. Conf. on Lasers 78, Orlando, Dec. 1978 and J. Phys. E Sci. Instrum. 11, 984 (1978)Google Scholar
  31. 7.27
    H.W. Kogelnik, E.P. Ippen, A. Dienes, Ch.V. Shank: Astigmatically compensated cavities for cw dye lasers. IEEE J. QE-8, 373 (1972)Google Scholar
  32. 7.28
    R. Beigang, G. Litfin, H. Welling: Frequency behavior and linewidth of cw single mode color center lasers. Opt. Commun. 22, 269 (1977)ADSGoogle Scholar
  33. 7.29
    H. Welling, G. Litfin, R. Beigang: “Tunable Infrared Lasers Using Color Centers”, in Ref. 1.11, p. 370 ffGoogle Scholar
  34. 7.30
    G. Litfin, R. Beigang: Design of tunable cw color center laser. J. Phys. E11, 984 (1978)ADSGoogle Scholar
  35. 7.30a
    L.F. Mollenhauer, D.M. Bloom, A.M. DelGaudio: Broadly tunable cw lasers using FMath-centers for the 1.26–1.48 μm and 0.82–1.07 μm bands. Opt. Lett. 3, 48 (1978)ADSGoogle Scholar
  36. 7.30b
    L.F. Mollenhauer: Room-temperature stable F-like center yields cw laser tunable over the 0.99–1.22 μm range. Opt. Lett. 5, 188 (1980)ADSGoogle Scholar
  37. 7.31
    F.P. Schäfer (ed.): Dye Lasers, Topics in Applied Physics, Vol. 1, 2nd ed. (Springer, Berlin, Heidelberg, New York 1978)Google Scholar
  38. 7.31a
    A. Müller, J. Schulz-Henning, H. Tashiro: Excited state absorption of 1,3,3,1’3’,3’ hexamethylindotricarbocyanine iodide. Appl. Phys. 12, 333 (1977)ADSGoogle Scholar
  39. 7.32a
    G. Marowsky, R. Cordray, F.K. Tittel, W.L. Wilson, J.W. Keto: Energy transfer processes in electron beam excited mixtures of laser dye vapors with rare gases. J. Chem. Phys. 67, 4845 (1977)ADSGoogle Scholar
  40. 7.32b
    J.G. Small: “The Dye Laser”, in Physics of Quantum Electronics, Vol. 4, ed. by A.F. Jacobs, M. Sargent III, M.O. Scully, Ch.T. Walker (Addison-Wesley, London 1976) p. 343 ffGoogle Scholar
  41. 7.32c
    B. Steyer, F.P. Schäfer: Stimulated and spontaneous emission from laser dyes in the vapor phase. Appl. Phys. 7, 113 (1975)ADSGoogle Scholar
  42. 7.33
    F.B. Dunning, R.F. Stebbings: The efficient generation of tunable near UV radiation using a N2-pumped dye laser. Opt. Commun. 11, 112 (1974)ADSGoogle Scholar
  43. 7.34
    T.W. Hänsch: Repetitively pulsed tunable dye laser for high resolution spectroscopy. Appl. Opt. 11, 895 (1972)ADSGoogle Scholar
  44. 7.34a
    R. Wallenstein: Pulsed narrow band dye lasers. Opt. Acta 23, 887 (1976)ADSGoogle Scholar
  45. 7.35
    I. Soshan, N.N. Danon, V.P. Oppenheim: Narrowband operation of a pulsed dye laser without intracavity beam expansion. J. Appl. Phys. 48, 4495 (1977)ADSGoogle Scholar
  46. 7.36
    S. Saikan: Nitrogen-laser-pumped single-mode dye laser. Appl. Phys. 17, 41 (1978)ADSGoogle Scholar
  47. 7.37
    M.G. Littman: Single-mode operation of grazing-incidence pulsed dye laser. Opt. Lett. 3, 138 (1978)ADSGoogle Scholar
  48. 7.38
    R. Wallenstein, T.W. Hänsch: Linear pressure tuning of a multielement dye laser spectrometer. Appl. Opt. 13, 1625 (1974)ADSGoogle Scholar
  49. 7.39
    S.M. Curry, R. Cubeddu, T.W. Hänsch: Intensity stabilization of dye laser radiation by saturated amplification. Appl. Phys. 1, 153 (1973)ADSGoogle Scholar
  50. 7.40
    R. Wallenstein, T.W. Hänsch: Powerful dye laser oscillator-amplifier system for high resolution spectroscopy. Opt. Commun. 14, 353 (1975)ADSGoogle Scholar
  51. 7.41
    W. Schmidt: Farbstofflaser. Laser 2, No. 4, 47 (1970);Google Scholar
  52. 7.41a
    G.H. Atkinson, M.W. Schuyler: A simple pulsed laser system, tunable in the ultraviolet. Appl. Phys. Lett. 27, 285 (1975)ADSGoogle Scholar
  53. 7.42
    A. Hirth, H. Fagot: High average power from long pulse dye laser. Opt. Commun. 21, 318 (1977)ADSGoogle Scholar
  54. 7.43
    J. Jethawa, F.P. Schäfer, J. Jasny: A reliable high average power dye laser. IEEE J. QE-14, 119 (1978)Google Scholar
  55. 7.44
    J. Kuhl, G. Marowsky, P. Kunstmann, W. Schmidt: A simple and reliable dye laser system for spectroscopic investigations. Z. Naturforsch. 27a, 601 (1972)ADSGoogle Scholar
  56. 7.45
    H. Walther, J.L. Hall: Tunable dye laser with narrow spectral output. Appl. Phys. Lett. 6, 239 (1970)ADSGoogle Scholar
  57. 7.46
    P.J. Bradley, W.G.I. Caugbey, J.I. Vukusic: High efficiency interferometric tuning of flashlamp-pumped dye-lasers. Opt. Commun. 4, 150 (1971)ADSGoogle Scholar
  58. 7.47
    M. Okada, K. Takizawa, S. Ieiri: Tilted birefringent Fabry-Perot etalon for tuning of dye lasers. Appl. Opt. 15, 472 (1976)ADSGoogle Scholar
  59. 7.48
    M. Okada, S. Ieiri: Electronic tuning ofdye-lasers by an electrooptic birefringent Fabry-Perot etalon. Opt. Commun. 14, 4 (1975)ADSGoogle Scholar
  60. 7.49
    J. Kopainsky: Laser scattering with a rapidly tuned dye laser. Appl. Phys. 8, 229 (1975)ADSGoogle Scholar
  61. 7.50
    J.J. Turner, E.I. Moses, C.L. Tang: Spectral narrowing and electrooptical tuning of a pulsed dye-laser by injection-locking to a cwdye laser. Appl. Phys. Lett. 27, 441 (1975)ADSGoogle Scholar
  62. 7.50a
    G.M. Gale: A single mode flashlamp-pumped dye laser. Opt. Commun. 7, 86 (1973)ADSGoogle Scholar
  63. 7.51
    S. Leutwyler, E. Schumacher, L. Wöste: Extending the solvent palette for cw jet-stream dye lasers. Opt. Commun. 19, 197 (1976)ADSGoogle Scholar
  64. 7.52
    P. Anliker, H.R. Lüthi, W. Seelig, J. Steinger, H.P. Weber: 33 watt cw dye laser. IEEE J. QE-13, 548 (1977)Google Scholar
  65. 7.53
    H.W. Kogelnik, E.P. Ippen, A. Dienes, Ch.V. Shank: Astigmatically compensated cavities for cw dye lasers. IEEE J. QE-8, 373 (1972)Google Scholar
  66. 7.54
    H.W. Schröder, H. Dux, H. Welling: Single mode operation of cw dyelasers. Appl. Phys. 7, 21 (1975)ADSGoogle Scholar
  67. 7.55
    H. Gerhardt, A. Timmermann: High resolution dye-laser spectrometer for measurements of isotope and isomer shifts and hyperfine structure. Opt. Commun. 21, 343 (1977)ADSGoogle Scholar
  68. 7.56
    K. Winkler, J. Kowalski: A magnetic tuning system for dye lasers. Appl. Phys. 14, 25 (1977)ADSGoogle Scholar
  69. 7.57
    G. Marowsky: A comparative study of dye prism ring lasers. IEEE J. QE-10, 832 (1974)Google Scholar
  70. 7.58
    G. Marowsky: A tunable flashlamp-pumped dye ring laser of extremely narrow bandwidth. IEEE J. QE-9, 245 (1973)Google Scholar
  71. 7.58a
    G. Marowsky: A single mode dye ring laser without output coupler using frustrated total internal reflection. Z. Naturforsch. A29a, 536 (1974)ADSGoogle Scholar
  72. 7.58b
    T.F. Johnston: Design and performance of a broadband optical diode to enforce one-direction traveling wave operation of a ring laser. IEEE J. QE-16, 483 (1980); Focus on Science 3, No.1, Febr. 1980 (Coherent)Google Scholar
  73. 7.59
    H.W. Schröder, L. Stein, D. Fröhlich, F. Fugger, H. Welling: A high power single mode cw dye ring-laser. Appl. Phys. 14, 377 (1978)ADSGoogle Scholar
  74. 7.60
    D. Kühlke, W. Diehl: Mode selection in cw laser with homogeneously broadened gain. Opt. Quantum Electron. 9, 305 (1977)ADSGoogle Scholar
  75. 7.61
    Such ring dye lasers are commercially available from Coherent Radiation and from Spectra Physics.Google Scholar
  76. 7.62
    D. Fröhlich, L. Stein, H.W. Schröder, H. Welling: Efficient frequency doubling of cw dye laser radiation. Appl. Phys. 11, 97 (1976)ADSGoogle Scholar
  77. 7.62a
    S.J. Bastow, M.H. Dunn: The generation of tunable UV radiation from 238–249 nm, by intracavity frequency doubling of a coumarin 102 dye laser. Opt. Commun. 35, 259 (1980)ADSGoogle Scholar
  78. 7.63
    J.D. Birks: Excimers. Rep. Prog. Phys. 38, 903 (1977)ADSGoogle Scholar
  79. 7.64
    H. Scheingraber, C.R Vidal: Discrete and continuous Franck-Condon factors of the Mg2 AiΣ+ -X1Σ+ system. J. Chem. Phys. 66, 3694 (1977)ADSGoogle Scholar
  80. 7.65
    H.H. Fleischmann: Highμcurrent electron beams. Phys. Today 28, 34 (1975)ADSGoogle Scholar
  81. 7.66
    C.P. Wang: Performance of XeF/KrF lasers pumped by fast discharges. Appl. Phys. Lett. 29, 103 (1976)ADSGoogle Scholar
  82. 7.67
    M. Rokni: Rare gas fluoride lasers. IEEE J. QE-14, 464 (1978)Google Scholar
  83. 7.68
    M. Rokni, J.H. Jacob, J.A. Mangano, J. Hsia, A.M. Hawryluk: “Dominant Formation and Quenching Processes in E-Beam Pumped ArF* and KrF* — lasers”, in High-Power Lasers and Applications, Springer Series in Optical Sciences, Vol. 9, ed. by K.L. Kompa, H. Walther (Springer, Berlin, Heidelberg, New York 1978) p.19–31Google Scholar
  84. 7.69
    M.L. Bhaumik, R.S. Bradford, E.R. Ault: High efficiency KrF excimer laser. Appl. Phys. Lett. 28, 23 (1976)ADSGoogle Scholar
  85. 7.70
    D.J. Bradley: “Coherent Radiation Generation at Short Wavelengths”, in High-Power Lasers and Applications, Springer Series in Optical Sciences, Vol. 9, ed. by K.L. Kompa, H. Walther (Springer, Berlin, Heidelberg, New York 1978) p.9–18Google Scholar
  86. 7.71
    Ch.A. Brau: “Excimer Lasers”, in High-Power Lasers and Applications, Springer Series in Optical Sciences, Vol. 9, ed. by K.L. Kompa, H. Walther (Springer, Berlin, Heidelberg, New York 1978)Google Scholar
  87. 7.71a
    M.H.R. Hutchinson: Excimers and excimer lasers. Appl. Phys. 21, 15 (1980)Google Scholar
  88. 7.72
    C.K. Rhodes (ed.): Excimer Lasers, Topics in Applied Physics, Vol. 30 (Springer, Berlin, Heidelberg, New York 1979)Google Scholar
  89. 7.72a
    C.R. Vidal: Coherent VUV sources for high resolution spectroscopy. Appl. Opt. 19, 3897 (1980)ADSGoogle Scholar
  90. 7.73
    F. Zernike, J.E. Midwinter: Applied Nonlinear Optics (Academic Press, New York 1973)Google Scholar
  91. 7.74
    P.G. Harper, B.S. Wherrett (eds.): Nonlinear Optics (Academic Press, London 1977)Google Scholar
  92. 7.75
    D.A. Kleinman, A. Ashkin, G.D. Boyd: Second harmonic generation of light by focussed laser beams. Phys. Rev. 145, 338 (1966)ADSGoogle Scholar
  93. 7.76
    G.C. Baldwin: An Introduction to Nonlinear Optics (Plenum Press, New York 1969)Google Scholar
  94. 7.77
    R.L. Byer: “Parametric Oscillators and Nonlinear Materials”, in Nonlinear Optics, ed. by P.G. Harper, B.S. Wherrett (Academic Press, London 1977)Google Scholar
  95. 7.78
    F.B. Dunnings, F.K. Tittel, R.F. Stebbings: The generation of tunable coherent radiation in the wavelength range 2300 to 3000 Å using lithium formate monohydride. Opt. Commun. 7, 181 (1973)ADSGoogle Scholar
  96. 7.79
    H. Dewey: Second Harmonic Generation in KB50H•4H20 from 217 to 315 nm. IEEE J. QE-12, 303 (1976) ium formate monohydride. Opt. Commun. 7, 181 (1973)Google Scholar
  97. 7.80
    F.B. Dunnings: Tunable ultraviolet generation by sum-frequency mixing. Laser Focus 14, No. 5, 72 (May 1978)Google Scholar
  98. 7.81
    S. Blit, E.G. Weaver, F.B. Dunnings, F.K. Tittel: Generation of tunable continuous wave ultraviolet radiation from 257 to 320 nm. Opt. Lett. 1, 58 (1977)ADSGoogle Scholar
  99. 7.82
    G.A. Massey, J.C. Johnson: Wavelength-tunable optical mixing experiments between 208 and 259 nm. IEEE J. QU-12, 721 (1976)Google Scholar
  100. 7.83
    C.R. Vidal: Third harmonic generation of modelocked Nd:glass laser pulses in phase matched Rb-Xe-mixtures. Phys. Rev. A14, 2240 (1976)Google Scholar
  101. 7.84
    P.P. Sorokin, J.A. Armstrong, R.W. Dreyfus, R.T. Hodgson, J.R. Lankard, L.H. Manganaro, J.J. Wynne: “Generation of Vacuum Ultraviolet Radiation by Nonlinear Mixing in Atomic and Ionic Vapors”, in Ref. 1.9, p. 46Google Scholar
  102. 7.85
    S.E. Harris, J.F. Young, A.H. Kung, D.M. Bloom, G.C. Bjorklund: “Generation of Ultraviolet and VUV-Radiation”, in Ref. 1.8, p. 59Google Scholar
  103. 7.86
    B.P. Stoicheff, S.C. Wallace: “Tunable Coherent VUV-Radiation”, in Ref. 1.10, p. 1Google Scholar
  104. 7.86a
    A.H. Kung, J.F. Young, G.C. Bjorklund, S.E. Harris: Phys. Rev. Lett. 29, 985 (1972)ADSGoogle Scholar
  105. 7.86b
    D.M. Bloom: “Optical Frequency Conversion in Metal Vapors”, in Physics of Quantum Electronics, Vol. 3, ed. by St.F. Jacobs, M.O. Scully, M. Sargent, III, C.D. Cantrell, III (Addison-Wesley, London 1976)Google Scholar
  106. 7.87
    A.S. Pine: “IR-Spectroscopy Via Difference-Frequency Generation”, in Ref. 1.11a, p. 376Google Scholar
  107. 7.88
    A.S. Pine: High-resolution methane V3-band spectra using a stabilized tunable difference frequence laser system. J. Opt. Soc. Am. 66, 97 (1976);ADSGoogle Scholar
  108. 7.88a
    A.S. Pine: High-resolution methane V3-band spectra using a stabilized tunable difference frequence laser system. J. Opt. Soc. Am. 64, 1683 (1974)ADSGoogle Scholar
  109. 7.89
    C.F. Dewey Jr., L.O. Hocker: Infrared difference frequency generation using a tunable dye laser. Appl. Phys. Lett. 18, 58 (1971)ADSGoogle Scholar
  110. 7.90
    R.Y. Shen (ed.): Nonlinear Infrared Generation, Topics in Applied Physics, Vol. 16 (Springer, Berlin, Heidelberg, New York 1977)Google Scholar
  111. 7.91
    R.G. Byer, R.L. Herbst, R.N. Fleming: “Broadly Tunable IR-Source”, in Ref. 1.9, p. 207Google Scholar
  112. 7.92
    S.E. Harris: Tunable optical parametric oscillators. Proc. IEEE 57, 2096 (1969)Google Scholar
  113. 7.93
    A. Yariv: “Parametric Processes”, in Progress in Quantum Electronics, Vol. 1, Part 1, ed. by J.H. Sanders, S. Stenholm (Pergamon Press, Oxford 1969)Google Scholar
  114. 7.94
    J. Pinard, J.F. Young: Interferometric stabilization of an optical parametric oscillator. Opt. Commun. 4, 425 (1972)ADSGoogle Scholar
  115. 7.95
    V. Wilke, W. Schmidt: Tunable coherent radiation source covering a spectral range from 185 to 880 nm. Appl. Phys. 18, 177 (1979)ADSGoogle Scholar
  116. 7.96
    W. Hartig, W. Schmidt: A broadly tunable IR waveguide raman laser pumped by a dye laser. Appl. Phys. 18, 235 (1979)ADSGoogle Scholar
  117. 7.96a
    Ch. Lin, R.H. Stolen, W.G. French, T.G. Malone: A cw tunable nearinfrared (1.085–1.175 μm) Raman oscillator. Opt. Lett. 1, 96 (1977)ADSGoogle Scholar
  118. 7.97
    A.Z. Grasiuk, I.G. Zubarev: High power tunable IR raman lasers. Appl. Phys. 17, 211 (1978)ADSGoogle Scholar
  119. 7.98
    H. Rabin, C.L. Tang (eds.): Quantum Electronics, Vol. I, Nonlinear Optics (Academic Press, New York 1975)Google Scholar
  120. 7.99
    N. Bloembergen: Nonlinear Optics (Benjamin, New York 1965)Google Scholar
  121. 7.100
    M. Schubert, B. Wilhelmi: Einführung in die Nichtlineare Optik. (Teubner, Leipzig 1978)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1981

Authors and Affiliations

  • Wolfgang Demtröder
    • 1
  1. 1.Fachbereich PhysikUniversität KaiserslauternKaiserslauternFed. Rep. of Germany

Personalised recommendations