Skip to main content

Lasers as Spectroscopic Light Sources

  • Chapter
Laser Spectroscopy

Part of the book series: Springer Series in Chemical Physics ((CHEMICAL,volume 5))

Abstract

Having summarized in the previous chapter some basic characteristics of lasers and optical resonators, we shall now discuss those properties which make the laser such an interesting and useful light source in spectroscopy. We shall describe the experimental techniques that are necessary for achieving optimal results in spectroscopic applications. These techniques comprise mode selection in lasers, wavelength and intensity stabilization of single-mode lasers, and experimental realizations of controlled wavelength tuning. Furthermore we briefly discuss the interesting question of why a lower limit exists for the laser linewidth. At the end of this chapter some methods of relative and absolute frequency measurements in the optical region will be presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Beck, W. Englisch, K. Gürs: Table of Laser Lines in Gases and Va— pors, 2nd Ed. Springer Series in Optical Sciences, Vol. 2 (Springer, Berlin, Heidelberg, New York 1978)

    Google Scholar 

  2. B.J. Orr: A constant deviation laser tuning device. J. Phys. E 6, 426 (1973)

    Article  ADS  Google Scholar 

  3. L. Allen, D.G.C. Jones: The helium-neon-laser. Adv. Phys. 14, 479 (1965)

    Article  ADS  Google Scholar 

  4. C.E. Moore: Atomic Energy Levels, Nat. Stand. Ref. Ser. 35, NBS Circular 467 (U.S. Dept. Commerce, Washington, D.C. 1971)

    ADS  Google Scholar 

  5. K. Bergmann, W. Demtröder: A new cascade laser transition in He-Nemixture. Phys. Lett. 29A, 94 (1969)

    Article  Google Scholar 

  6. P.W. Smith: On the optimum geometry of a 6328 Å laser oscillator. IEEE J. QE-2, 77 (1966)

    Article  Google Scholar 

  7. W.B. Bridges, A.N. Chester, A.S. Halsted, J.V. Parker: Ion laser plasmas. Proc. IEEE 59, 724 (1971)

    Article  Google Scholar 

  8. A. Ferrario, A. Sirone, A. Sona: Interaction mechanisms of laser transitions in argon and krypton ion-lasers. Appl. Phys. Lett. 14, 174 (1969)

    Article  ADS  Google Scholar 

  9. C.C. Davis, T.A. King: “Gaseous Ion Lasers”, in Advances in Quantum Electronics, Vol. 3, ed. by D.W. Goodwin (Academic Press, London 1975)

    Google Scholar 

  10. G. Herzberg: Molecular Spectra and Molecular Structure, Vol. II (Van Nostrand Reinhold, New York 1945)

    Google Scholar 

  11. D.C. Tyle: “Carbon Dioxyde Lasers”, in Advances in Quantum Electronics, Vol. 1, ed. by D.W. Goodwin (Academic Press, London 1970)

    Google Scholar 

  12. K. Güürs: Der CO2-laser. Z. Angew. Phys. 25, 379 (1968)

    Google Scholar 

  13. H.W. Mocker: Rotational level competition in CO2-lasers. IEEE J. QE-4, 769 (1968)

    Article  Google Scholar 

  14. H. Kogelnik, T. Li: Laser beams and resonators. Proc. IEEE 54, 1312 (1966)

    Article  Google Scholar 

  15. J. Haisma: Construction and properties of short stable gas lasers. Phillips Res. Rpt., Supplement No. 1 (1967) and Phys. Lett. 2, 340 (1962)

    Google Scholar 

  16. M. Hercher: Tunable single mode operation of gas lasers using intracavity tilted etalons. Appl. Opt. 8, 1103 (1969)

    Article  ADS  Google Scholar 

  17. P.W. Smith: Stabilized single frequency output from a long laser cavity. IEEE J. QE-1, 343 (1965)

    Article  Google Scholar 

  18. P. Zory: Single frequency operation of argon ion lasers. IEEE J. QE-3, 390 (1967)

    Article  Google Scholar 

  19. V.P. Belayev, V.A. Burmakin, A.N. Evtyunin, F.A. Korolyov, V.V. Lebedeva, A.I. Odintzov: High power single-frequency argon ion laser. IEEE J. QE-5, 589 (1969)

    Article  Google Scholar 

  20. P.W. Smith: Mode selection in lasers. Proc. IEEE 60, 422 (1972)

    Article  Google Scholar 

  21. W.W. Rigrod, A.M. Johnson: Resonant prism mode selector for gas lasers. IEEE J. QE-3, 644 (1967)

    Article  Google Scholar 

  22. R.E. Grove, E.Y. Wu, L.A. Hackel, D.G. Youmans, S. Ezekiel: Jet stream cw-dye laser for high resolution spectroscopy. Appl. Phys. Lett. 23, 442 (1973)

    Article  ADS  Google Scholar 

  23. T.W. Hänsch: Repetitively pulsed tunable dye laser for high resolution spectroscopy. Appl. Opt. 11, 895 (1973)

    Article  Google Scholar 

  24. J.P. Goldsborough: “Design of Gas Lasers”, in Laser Handbook I, ed. by F.T. Arrecchi, E.O. Schulz-Dubois (North-Holland, Amsterdam 1972) p. 597 ff

    Google Scholar 

  25. Schott-Information Sheet (Jenaer Glaserk Schott Gen., Hattenbergstraße 10, 65 Mainz, W. Germany, 1972)

    Google Scholar 

  26. I.S. Chelvdew: Elektrische Kristalle (Akademie-Verlag, Berlin 1975)

    Google Scholar 

  27. K. Bystron: Technische Elektronik (Hanser Verlag, München 1974)

    Google Scholar 

  28. F. Paech, R. Schmiedl, W. Demtröder: Collision free lifetimes of excited NO2 under very high resolution. J. Chem. Phys. 63, 4369 (1975)

    Article  ADS  Google Scholar 

  29. K.M. Baird, G.R. Hanes: Stabilisation of wavelengths from gas lasers. Rep. Prog. Phys. 37, 927 (1974)

    Article  ADS  Google Scholar 

  30. W.J. Tomlinson, R.L. Fork: Frequency stabilisation of a gas laser. Appl. Opt. 8, 121 (1969)

    Article  ADS  Google Scholar 

  31. H. Hellwig, H.E. Bell, P. Kartaschoff, J.C. Bergquist: Frequency stability of methane-stabilized He-Ne-lasers. J. Appl. Phys. 43, 450 (1972)

    Article  ADS  Google Scholar 

  32. D.G. Youmans, L.A. Hackel, S. Ezekiel: High-resolution spectroscopy of I2 using laser-molecular-beam techniques. J. Appl. Phys. 44, 2319 (1973)

    Article  ADS  Google Scholar 

  33. D.W. Allen: Proc. IEEE 54, 221 (1966)

    Article  Google Scholar 

  34. P. Cerez, S.J. Bennet: New developments in iodine-stabilised He-Nelasers. IEEE Trans. IM-27, 396 (1978)

    Google Scholar 

  35. F. Spieweck: “Wavelength Stabilization of the AR -Laser Line at X = 514,5 nm for Length Measurements of Highest Precision”, in Laser 77, Opto—electronics, ed. by W. Waidelich (IPC Science and Technology Press, Guildford, Surrey 1977)

    Google Scholar 

  36. J.L. Hall: “Saturated Absorption Spectroscopy”, in Atomic Physics, Vol. 3, ed. by S.J. Smith, G.W. Walters (Plenum Press, New York 1973) p. 615 ff

    Google Scholar 

  37. R. Wallenstein, T.W. Hänsch: Linear pressure tuning of a multielement dye laser spectrometer. Appl. Opt. 13, 1625 (1974)

    Article  ADS  Google Scholar 

  38. W. Jitschin, G. Meisel: “Precise Frequency Tuning of a Single Mode Dye Laser”, in Laser 77, Opto-Electronics, Conf. Proc. ed. by W. Waidelich (IPC Science and Technology Press, Guildford, Surrey 1977)

    Google Scholar 

  39. J.L. Hall: “Sub-Doppler-Spectroscopy, Methane Hyperfine Spectroscopy and the Ultimate Resolution Limits”, in Ref. 1.7, p. 105 ff

    Google Scholar 

  40. K.M. Evenson, D.A. Jennings, F.R. Peterson, J.S. Wells: “Laser Frequency Measurements: A Review, Limitations, Extension to 197 THz (1,5 pm)”, in Ref. 1.11, p. 56 ff

    Google Scholar 

  41. W.R. Rowley, B.W. Jolliffe, K.C. Schotton, A.J. Wallard, P.T. Woods: Laser wavelength measurements and the speed of light. Opt. Quantum Electron. 8, 1 (1976);

    Article  ADS  Google Scholar 

  42. D.J.E. Knight, P.T. Woods: Application of nonlinear devices to optical frequency measurements. J. Phys. E 9, 898 (1976)

    Article  ADS  Google Scholar 

  43. J. Terrien: International agreement on the value of the speed of light. Metrologia 10, 9 (1974)

    Article  ADS  Google Scholar 

  44. See, for example, Ref. 1.5, p. 287 ff

    Google Scholar 

  45. W. Brunner, W. Radloff, K. Junge: Quantenelektronik (VEB Deutscher Verlag der Wissenschaften, Berlin 1975) p. 212 ff

    Google Scholar 

  46. A.L. Schawlow, C.H. Townes: Infrared and optical masers. Phys. Rev. 112, 1940 (1958)

    Article  ADS  Google Scholar 

  47. C.J. Bordé, J.L. Hall: “Ultrahigh Resolution Saturated Absorption Spectroscopy”, in Laser Spectroscopy, ed. by R.G. Brewer, H. Mooradian (Plenum Press, New York 1974) pp. 125–142 bilit

    Google Scholar 

  48. S.N. Bagayev, V.P. Chebotajev: Frequency stability and reproducibility of the 3,39 μm He-Ne-laser stabilized on the methane line. Appl. Phys. 7, 71 (1975)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Demtröder, W. (1981). Lasers as Spectroscopic Light Sources. In: Laser Spectroscopy. Springer Series in Chemical Physics, vol 5. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-08257-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-08257-7_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-08259-1

  • Online ISBN: 978-3-662-08257-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics