Lasers as Spectroscopic Light Sources

  • Wolfgang Demtröder
Part of the Springer Series in Chemical Physics book series (CHEMICAL, volume 5)


Having summarized in the previous chapter some basic characteristics of lasers and optical resonators, we shall now discuss those properties which make the laser such an interesting and useful light source in spectroscopy. We shall describe the experimental techniques that are necessary for achieving optimal results in spectroscopic applications. These techniques comprise mode selection in lasers, wavelength and intensity stabilization of single-mode lasers, and experimental realizations of controlled wavelength tuning. Furthermore we briefly discuss the interesting question of why a lower limit exists for the laser linewidth. At the end of this chapter some methods of relative and absolute frequency measurements in the optical region will be presented.


Mode Selection Transmission Peak Free Spectral Range Laser Resonator Doppler Width 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 6.1
    R. Beck, W. Englisch, K. Gürs: Table of Laser Lines in Gases and Va— pors, 2nd Ed. Springer Series in Optical Sciences, Vol. 2 (Springer, Berlin, Heidelberg, New York 1978)Google Scholar
  2. 6.2
    B.J. Orr: A constant deviation laser tuning device. J. Phys. E 6, 426 (1973)ADSCrossRefGoogle Scholar
  3. 6.3
    L. Allen, D.G.C. Jones: The helium-neon-laser. Adv. Phys. 14, 479 (1965)ADSCrossRefGoogle Scholar
  4. 6.3a
    C.E. Moore: Atomic Energy Levels, Nat. Stand. Ref. Ser. 35, NBS Circular 467 (U.S. Dept. Commerce, Washington, D.C. 1971)ADSGoogle Scholar
  5. 6.4
    K. Bergmann, W. Demtröder: A new cascade laser transition in He-Nemixture. Phys. Lett. 29A, 94 (1969)CrossRefGoogle Scholar
  6. 6.5
    P.W. Smith: On the optimum geometry of a 6328 Å laser oscillator. IEEE J. QE-2, 77 (1966)CrossRefGoogle Scholar
  7. 6.6
    W.B. Bridges, A.N. Chester, A.S. Halsted, J.V. Parker: Ion laser plasmas. Proc. IEEE 59, 724 (1971)CrossRefGoogle Scholar
  8. 6.7
    A. Ferrario, A. Sirone, A. Sona: Interaction mechanisms of laser transitions in argon and krypton ion-lasers. Appl. Phys. Lett. 14, 174 (1969)ADSCrossRefGoogle Scholar
  9. 6.8
    C.C. Davis, T.A. King: “Gaseous Ion Lasers”, in Advances in Quantum Electronics, Vol. 3, ed. by D.W. Goodwin (Academic Press, London 1975)Google Scholar
  10. 6.9
    G. Herzberg: Molecular Spectra and Molecular Structure, Vol. II (Van Nostrand Reinhold, New York 1945)Google Scholar
  11. 6.9a
    D.C. Tyle: “Carbon Dioxyde Lasers”, in Advances in Quantum Electronics, Vol. 1, ed. by D.W. Goodwin (Academic Press, London 1970)Google Scholar
  12. 6.9b
    K. Güürs: Der CO2-laser. Z. Angew. Phys. 25, 379 (1968)Google Scholar
  13. 6.9c
    H.W. Mocker: Rotational level competition in CO2-lasers. IEEE J. QE-4, 769 (1968)CrossRefGoogle Scholar
  14. 6.10
    H. Kogelnik, T. Li: Laser beams and resonators. Proc. IEEE 54, 1312 (1966)CrossRefGoogle Scholar
  15. 6.11
    J. Haisma: Construction and properties of short stable gas lasers. Phillips Res. Rpt., Supplement No. 1 (1967) and Phys. Lett. 2, 340 (1962)Google Scholar
  16. 6.12
    M. Hercher: Tunable single mode operation of gas lasers using intracavity tilted etalons. Appl. Opt. 8, 1103 (1969)ADSCrossRefGoogle Scholar
  17. 6.13
    P.W. Smith: Stabilized single frequency output from a long laser cavity. IEEE J. QE-1, 343 (1965)CrossRefGoogle Scholar
  18. 6.14
    P. Zory: Single frequency operation of argon ion lasers. IEEE J. QE-3, 390 (1967)CrossRefGoogle Scholar
  19. 6.15
    V.P. Belayev, V.A. Burmakin, A.N. Evtyunin, F.A. Korolyov, V.V. Lebedeva, A.I. Odintzov: High power single-frequency argon ion laser. IEEE J. QE-5, 589 (1969)CrossRefGoogle Scholar
  20. 6.16
    P.W. Smith: Mode selection in lasers. Proc. IEEE 60, 422 (1972)CrossRefGoogle Scholar
  21. 6.17
    W.W. Rigrod, A.M. Johnson: Resonant prism mode selector for gas lasers. IEEE J. QE-3, 644 (1967)CrossRefGoogle Scholar
  22. 6.18
    R.E. Grove, E.Y. Wu, L.A. Hackel, D.G. Youmans, S. Ezekiel: Jet stream cw-dye laser for high resolution spectroscopy. Appl. Phys. Lett. 23, 442 (1973)ADSCrossRefGoogle Scholar
  23. 6.19
    T.W. Hänsch: Repetitively pulsed tunable dye laser for high resolution spectroscopy. Appl. Opt. 11, 895 (1973)CrossRefGoogle Scholar
  24. 6.20
    J.P. Goldsborough: “Design of Gas Lasers”, in Laser Handbook I, ed. by F.T. Arrecchi, E.O. Schulz-Dubois (North-Holland, Amsterdam 1972) p. 597 ffGoogle Scholar
  25. 6.21
    Schott-Information Sheet (Jenaer Glaserk Schott Gen., Hattenbergstraße 10, 65 Mainz, W. Germany, 1972)Google Scholar
  26. 6.22
    I.S. Chelvdew: Elektrische Kristalle (Akademie-Verlag, Berlin 1975)Google Scholar
  27. 6.23
    K. Bystron: Technische Elektronik (Hanser Verlag, München 1974)Google Scholar
  28. 6.24
    F. Paech, R. Schmiedl, W. Demtröder: Collision free lifetimes of excited NO2 under very high resolution. J. Chem. Phys. 63, 4369 (1975)ADSCrossRefGoogle Scholar
  29. 6.25
    K.M. Baird, G.R. Hanes: Stabilisation of wavelengths from gas lasers. Rep. Prog. Phys. 37, 927 (1974)ADSCrossRefGoogle Scholar
  30. 6.26
    W.J. Tomlinson, R.L. Fork: Frequency stabilisation of a gas laser. Appl. Opt. 8, 121 (1969)ADSCrossRefGoogle Scholar
  31. 6.27
    H. Hellwig, H.E. Bell, P. Kartaschoff, J.C. Bergquist: Frequency stability of methane-stabilized He-Ne-lasers. J. Appl. Phys. 43, 450 (1972)ADSCrossRefGoogle Scholar
  32. 6.28
    D.G. Youmans, L.A. Hackel, S. Ezekiel: High-resolution spectroscopy of I2 using laser-molecular-beam techniques. J. Appl. Phys. 44, 2319 (1973)ADSCrossRefGoogle Scholar
  33. 6.29
    D.W. Allen: Proc. IEEE 54, 221 (1966)CrossRefGoogle Scholar
  34. 6.29a
    P. Cerez, S.J. Bennet: New developments in iodine-stabilised He-Nelasers. IEEE Trans. IM-27, 396 (1978)Google Scholar
  35. 6.29b
    F. Spieweck: “Wavelength Stabilization of the AR -Laser Line at X = 514,5 nm for Length Measurements of Highest Precision”, in Laser 77, Opto—electronics, ed. by W. Waidelich (IPC Science and Technology Press, Guildford, Surrey 1977)Google Scholar
  36. 6.30
    J.L. Hall: “Saturated Absorption Spectroscopy”, in Atomic Physics, Vol. 3, ed. by S.J. Smith, G.W. Walters (Plenum Press, New York 1973) p. 615 ffGoogle Scholar
  37. 6.31
    R. Wallenstein, T.W. Hänsch: Linear pressure tuning of a multielement dye laser spectrometer. Appl. Opt. 13, 1625 (1974)ADSCrossRefGoogle Scholar
  38. 6.32
    W. Jitschin, G. Meisel: “Precise Frequency Tuning of a Single Mode Dye Laser”, in Laser 77, Opto-Electronics, Conf. Proc. ed. by W. Waidelich (IPC Science and Technology Press, Guildford, Surrey 1977)Google Scholar
  39. 6.33
    J.L. Hall: “Sub-Doppler-Spectroscopy, Methane Hyperfine Spectroscopy and the Ultimate Resolution Limits”, in Ref. 1.7, p. 105 ffGoogle Scholar
  40. 6.34
    K.M. Evenson, D.A. Jennings, F.R. Peterson, J.S. Wells: “Laser Frequency Measurements: A Review, Limitations, Extension to 197 THz (1,5 pm)”, in Ref. 1.11, p. 56 ffGoogle Scholar
  41. 6.35
    W.R. Rowley, B.W. Jolliffe, K.C. Schotton, A.J. Wallard, P.T. Woods: Laser wavelength measurements and the speed of light. Opt. Quantum Electron. 8, 1 (1976);ADSCrossRefGoogle Scholar
  42. 6.35a
    D.J.E. Knight, P.T. Woods: Application of nonlinear devices to optical frequency measurements. J. Phys. E 9, 898 (1976)ADSCrossRefGoogle Scholar
  43. 6.36
    J. Terrien: International agreement on the value of the speed of light. Metrologia 10, 9 (1974)ADSCrossRefGoogle Scholar
  44. 6.37
    See, for example, Ref. 1.5, p. 287 ffGoogle Scholar
  45. 6.38
    W. Brunner, W. Radloff, K. Junge: Quantenelektronik (VEB Deutscher Verlag der Wissenschaften, Berlin 1975) p. 212 ffGoogle Scholar
  46. 6.39
    A.L. Schawlow, C.H. Townes: Infrared and optical masers. Phys. Rev. 112, 1940 (1958)ADSCrossRefGoogle Scholar
  47. 6.40
    C.J. Bordé, J.L. Hall: “Ultrahigh Resolution Saturated Absorption Spectroscopy”, in Laser Spectroscopy, ed. by R.G. Brewer, H. Mooradian (Plenum Press, New York 1974) pp. 125–142 bilitGoogle Scholar
  48. 6.41
    S.N. Bagayev, V.P. Chebotajev: Frequency stability and reproducibility of the 3,39 μm He-Ne-laser stabilized on the methane line. Appl. Phys. 7, 71 (1975)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1981

Authors and Affiliations

  • Wolfgang Demtröder
    • 1
  1. 1.Fachbereich PhysikUniversität KaiserslauternKaiserslauternFed. Rep. of Germany

Personalised recommendations