Spectroscopic Instrumentation

  • Wolfgang Demtröder
Part of the Springer Series in Chemical Physics book series (CHEMICAL, volume 5)


This chapter is devoted to a discussion of instruments and techniques which are of fundamental importance for measurements of wavelengths and line profiles or for sensitive detection of radiation. The optimum selection of proper equipment or the application of a new technique is often decisive for the success of an experimental investigation. Since the development of spectroscopic instrumentation has shown great progress in recent years it is most important for any spectroscopist to be informed about the state of the art regarding sensitivity, spectral resolving power, and signal-to-noise ratios attainable with modern equipment.


Image Intensifier Path Difference Entrance Slit Free Spectral Range Michelson Interferometer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 4.1
    K.I. Tarasov: The Spectroscope (Adam Hilger, London 1974)Google Scholar
  2. 4.2
    A.P. Thorne: Spectrophysics (Chapman and Hall Science Paperbacks, London 1974)Google Scholar
  3. 4.3
    P. Bousquet: Spectroscopy and its Instrumentation (Adam Hilger, London 1971)Google Scholar
  4. 4.4
    G.L. Clark: The Encyclopedia of Spectroscopy (Reinhold, New York 1960)Google Scholar
  5. 4.5
    See, for instance, Ref. 2.3 or W.J. Smith: Modern Optical Engineering (McGraw-Hill, New York 1966)Google Scholar
  6. 4.5a
    See Ref. 2.5, p. 333 ffGoogle Scholar
  7. 4.5b
    D.E. Gray (ed.): American Institute of Physics Handbook (McGraw-Hill, New York 1972)Google Scholar
  8. 4.6
    Handbook of Diffraction Gratings, Ruled and Holographic (Jobin Yvon Optical Systems, 20 Highland Ave., Metuchen, N.J. 1970)Google Scholar
  9. 4.7
    Bausch & Lomb Diffraction Grating Handbook (Bausch & Lomb, Rochester, N.Y. 1970)Google Scholar
  10. 4.8
    G. Schmahl, D. Rudolph: “Holographic Diffraction Gratings”, in Progress in Optics, Vol. XIV, ed. by E. Wolf (North-Holland, Amsterdam 1977) p. 195 fGoogle Scholar
  11. 4.9
    S.P. Davis: Diffraction Grating Spectrographs (Holt Rinehard, Winston, New York 1970)Google Scholar
  12. 4.10
    G.W. Stroke: “Diffraction Gratings”, in Handbuch der Physik, Vol. 29, ed. by S. Flügge (Springer, Berlin, Heidelberg, New York 1967)Google Scholar
  13. 4.11
    F. Kneubühl: Diffraction grating spectroscopy. Appl Opt. 8, 505 (1969)ADSCrossRefGoogle Scholar
  14. 4.12
    Basic treatments of interferometers may be found in general textbooks on optics, more detailed discussions for instance in S. Tolansky: An Introduction to Interferometry (Longman, London 1973);Google Scholar
  15. 4.12a
    W.H. Steel: Interferometry (Cambridge University Press, Cambridge 1967) ;Google Scholar
  16. 4.12b
    J. Dyson: Interferometry (Machinery Publ., Brighton 1970);Google Scholar
  17. 4.12c
    M. Francon: Optical Interferometry (Academic Press, New York 1966). A recommended review on “New Developments in Interferometry” has been written by H. Polster, J. Pastor, R.M. Scott, R. Crane, P.H. Langenbeck, R. Pilston, G. Steinberg: Appl. Opt. 8, 521 (1969)Google Scholar
  18. 4.13
    M. Francon, J. Mallick: Polarisation Interferometers (Wiley Interscience, London 1971)Google Scholar
  19. 4.14
    H. Welling, B. Wellingehausen: High resolution Michelson interferometer for spectral investigations of lasers. Appl. Opt. 11, 1986 (1972)Google Scholar
  20. 4.15
    W.W. Rigrod, A.M. Johnson: Resonant prism mode selector for gas lasers. IEEE J. QE-3, 644 (1967)CrossRefGoogle Scholar
  21. 4.16
    R.J. Bell: Introductory Fourier Transform Spectroscopy (Academic Press, New York 1972)Google Scholar
  22. 4.17
    M.J.D. Low: Fourier-transform-spectroscopy. Naturwissenschaften 57, 280 (1970)ADSCrossRefGoogle Scholar
  23. 4.18
    H.A. Gebbie: Fourier transform versus grating spectroscopy. Appl. Opt. 8, 501 (1969)ADSCrossRefGoogle Scholar
  24. 4.19
    J.B. Bates: Fourier transform infrared spectroscopy. Science 191, 31 (1976)ADSCrossRefGoogle Scholar
  25. 4.20
    D.C. Champeney: Fourier Transforms and their Physical Applications (Academic Press, New York 1973)zbMATHGoogle Scholar
  26. 4.21
    H.R. Chandrasekhar, L. Genzel, J. Kühl: Double beam Fourier spectroscopy with interferometric background compensation. Opt. Commun. 17, 106 (1976)ADSCrossRefGoogle Scholar
  27. 4.22
    V. Grigull, H. Rottenkolber: Two beam interferometer using a laser. J. Opt. Soc. Am. 57, 149 (1967)ADSCrossRefGoogle Scholar
  28. 4.23
    W.C. Marlow: Haken-methode. Appl. Opt. 6, 1715 (1967)ADSCrossRefGoogle Scholar
  29. 4.24a
    J.P. Marioge, B. Bonino: Fabry-Perot interferometer surfacing. Opt. Laser Technol. 4, 228 (1972)ADSCrossRefGoogle Scholar
  30. 4.24b
    M. Hercher: Tilted etalons in laser resonators. Appl. Opt. 8, 1103 (1969)ADSCrossRefGoogle Scholar
  31. 4.25
    V.R. Costich: “Multilayer Dielectric Coatings”, in Handbook of Lasers, ed. by R.J. Pressley (Chemical Rubber Company, Cleveland, Ohio 1972)Google Scholar
  32. 4.26
    J. McDonald: Metal—Dielectric Multilayers (Adam Hilger, London 1971)Google Scholar
  33. 4.27
    H. Anders: Dünne Schichten für die Optik (Wissenschaft. Verlagsgesellschaft, Stuttgart 1965)Google Scholar
  34. 4.28
    H.A. Macleod: Thin Film Optical Filters (Adam Hilger, London 1969)Google Scholar
  35. 4.29
    A. Musset, A. Thelen: “Multilayer Antireflection Coatings”, in Prog— ress in Optics, Vol. III, ed. by E. Wolf (North-Holland, Amsterdam 1970) p. 203 ffGoogle Scholar
  36. 4.30
    J.T. Cox, G. Hass: In Physics of Thin Films, Vol. 2 (Academic Press, New York 1964)Google Scholar
  37. 4.31
    E. Delano, R.J. Pegis: “Methods of Synthesis for Dielectric Multilayer Filters”, in Progress in Optics, Vol. VII, ed. by E. Wolf (North-Holland, Amsterdam 1969) p. 69 ffGoogle Scholar
  38. 4.32
    W. Demtröder, M. Stock: Molecular constants and potential curves of Na2 from laser-induced fluorescence. J. Mol. Spectrosc. 55, 476 (1975)ADSCrossRefGoogle Scholar
  39. 4.33
    P. Connes: L’etalon de Fabry-Perot spherique. Phys. Radium 19, 262 (1958), and in Quantum Electronics and Coherent Light , ed. by P.H. Miles (Academic Press, New York 1964) p. 198 ffCrossRefGoogle Scholar
  40. 4.33a
    J.R. Johnson: A high resolution scanning confocal interferometer.Appl. Opt. 7, 1061 (1958)ADSCrossRefGoogle Scholar
  41. 4.34
    M. Hercher: The spherical mirror Fabry-Perot interferometer. Appl. Opt. 7, 951 (1968)ADSCrossRefGoogle Scholar
  42. 4.35
    J. Evans: The birefringent filter. J. Opt. Soc. Am. 39, 229 (1949)ADSCrossRefGoogle Scholar
  43. 4.36
    H. Walther, J.L. Hall: Tunable dye laser with narrow spectral output. Appl. Phys. Lett. 17, 239 (1970)ADSCrossRefGoogle Scholar
  44. 4.36a
    M. Okada, S. Iliri: Electronic tuning of dye lasers by an electrooptic birefringent Fabry-Perot etalon. Opt. Commun. 14, 4 (1975)ADSCrossRefGoogle Scholar
  45. 4.37
    B.H. Billings: The electro-optic effect in uniaxial crystals of the type XH2PO4. J. Opt. Soc. Am. 39, 797 (1949)ADSCrossRefGoogle Scholar
  46. 4.38
    B. Zwicker, P. Scherrer: Elektrooptische Eigenschaften der Seignette-elektrischen Kristalle KH2PO4 und KD2PO4. Helv. Phys. Acta 17, 346 (1944)Google Scholar
  47. 4.38a
    F. Zernike, J.E. Midwinter: Applied Nonlinear Optics (Academic Press, New York 1973)Google Scholar
  48. 4.39
    A.L. Bloom: Modes of a laser resonator containing tilted birefringent plates. J. Opt. Soc. Am. 64, 447 (1974)ADSCrossRefGoogle Scholar
  49. 4.40
    J.R. Johnson: A high resolution scanning confocal interferometer. Appl Opt. 7, 1061 (1968)ADSCrossRefGoogle Scholar
  50. 4.41
    R.L. Fork, D.R. Herriot, H. Kogelnik: A scanning spherical mirror interferometer for spectral analysis of laser radiation. Appl. Opt. 3, 1471 (1964)ADSCrossRefGoogle Scholar
  51. 4.42
    V.G. Cooper, B.K. Gupta, A.D. May: Digitally pressure scanned FabryPerot interferometer for studying weak spectral lines. Appl. Opt. 11, 2265 (1972)ADSCrossRefGoogle Scholar
  52. 4.43
    J.M. Telle, C.L. Tang: Direct absorption spectroscopy, using a rapidly tunable cw-dye-laser. Opt. Commun. 11, 251 (1974)ADSCrossRefGoogle Scholar
  53. 4.44
    P.R. Bevington: Data Reduction and Error Analysis for the Physical Sciences (McGraw-Hill, New York 1969)Google Scholar
  54. 4.45
    Th.W. Hänsch: “A Self-Calibrating Grating”, in Ref. 1.11, p. 423 ffGoogle Scholar
  55. 4.46
    P. Cerez, S.J. Bennet: New developments in iodine-stabilized He-Nelasers. IEEE Trans. IM-27, 396 (1978)Google Scholar
  56. 4.47
    K.M. Evenson, J.S. Wells, F.R. Petersen, B.L. Danielson, G.W. Day, R.L. Barger, J.L. Hall: Speed of light from direct frequency and wavelength measurements of the methane-stabilized laser. Phys. Rev. Lett. 29, 1346 (1972)ADSCrossRefGoogle Scholar
  57. 4.48
    K.M. Evenson, D.A. Jennings, F.R. Petersen, J.S. Wells: “Laser Frequency Measurements: A Review, Limitations and Extension to 197 THz”, in Ref. 1.11, p. 56Google Scholar
  58. 4.49
    J.J. Snyder: “Fizeau Wavelength Meter”, in Ref. 1.11, p. 419 ffGoogle Scholar
  59. 4.50
    R.L. Byer, J. Paul, M.D. Duncan: “A Wavelength Meter”, in Ref. 1.11, p . 414Google Scholar
  60. 4.50a
    A. Fischer, H. Kullmer, W. Demtröder: A Fabry-Perot-type wavemeter for cw and pulsed lasers. Opt. Commun. (in preparation)Google Scholar
  61. 4.51
    J.L. Hall, S.A. Lee: Interferometric real time display of cw dye laser wavelength with sub-Doppler accuracy. Appl. Phys. Lett. 29, 367 (1976)ADSCrossRefGoogle Scholar
  62. 4.52
    F.V. Kowalski, R.E. Teets, W. Demtröder, A.L. Schawlow: An improved wavemeter for cw lasers; J. Opt. Soc. Am. 68, 1611 (1978)ADSCrossRefGoogle Scholar
  63. 4.53
    R. Best: Theorie und Anwendung des Phase-Locked Loops (AT-Fachverlag, Stuttgart 1976)Google Scholar
  64. 4.53a
    F.M. Gardner: Phase—Lock Techniques (Wiley, New York 1966) Phase—Locked Loop Data Book (Motorola Semiconductor Prod., Inc. 1973)Google Scholar
  65. 4.54
    P. Juncar, J. Pinard: A new method for frequency calibration and control of a laser. Opt. Commun. 14, 438 (1975) P. Jacquinot, P. Juncar, J. Pinard: “Motionless Michelson for High Precision Laser Frequency Measurements: The Sigmameter”, in Ref. 1.11, p. 417ADSCrossRefGoogle Scholar
  66. 4.55
    G.C. Mönch: Interferenzlängenmessung und Brechzahlbestimmung (Pfalz-Verlag, Basel 1966)Google Scholar
  67. 4.55a
    F. Stöckmann: Photodetectors, their performance and limitations. Appl. Phys. 7, 1 (1975)ADSCrossRefGoogle Scholar
  68. 4.56
    J.J. Keyes (ed.): Optical and Infrared Detectors, Topics in Applied Physics, Vol. 19 (Springer, Berlin, Heidelberg, New York 1977)Google Scholar
  69. 4.57
    E.H. Putley: “Thermal Detectors”, in Ref.4.56, p. 71 ffGoogle Scholar
  70. 4.58
    M.J.E. Golay; Rev. Sci. Instr. 18, 357 (1947)ADSCrossRefGoogle Scholar
  71. 4.59
    W.M. Doyle: Pyroelectric detectors. Laser Focus 6, 34 (July 1970)Google Scholar
  72. 4.60
    A.J. Steckl, R.D. Nelson, B.T. French, R.A. Gudmundsen, D. Schecater: Proc. IEEE 63, 67 (1975)ADSCrossRefGoogle Scholar
  73. 4.61
    C.A. Hamilton, R.J. Phelan, G.W. Day: Pyroelectric radiometers. Opt. Spectra 9, 37 (October 1975)Google Scholar
  74. 4.62
    H.R. Zwicker: “Photoemissive Detectors”, in Ref. 4.56, p. 149 ffGoogle Scholar
  75. 4.63
    R.L. Bell: Negative Electron Affinity Devices (Clarendon Press, Oxford 1973)Google Scholar
  76. 4.64
    G.H. McCall: High speed inexpensive photodiode assembly. Rev. Sci. Instrum. 43, 865 (1972)ADSCrossRefGoogle Scholar
  77. 4.65
    P.W. Kruse: “The Photon Detection Process”, in Ref. 4.56, p. 5Google Scholar
  78. 4.66
    EMI Electronics, Ltd.: “An Introduction to the Photomultiplier”; Information sheet (1966)Google Scholar
  79. 4.67
    L.E. Wood, T.K. Grady, M.C. Thompson: Technique for the measurement of photomultiplier transit time variation. Appl. Opt. 8, 2143 (1969)ADSCrossRefGoogle Scholar
  80. 4.68
    B. Sipp, J.A. Miehe, R. Lopez Delgado: Wavelength dependence of the time resolution of high speed photomultipliers used in single-photon timing experiments. Opt. Commun. 16, 202 (1976)ADSCrossRefGoogle Scholar
  81. 4.69
    J.D. Rees, M.P. Givens: Variation of time of flight of electrons through a photomultiplier. J. Opt. Soc. Am. 56, 93 (1966)ADSCrossRefGoogle Scholar
  82. 4.70
    G. Beck: Operation of a 1P28 photomultiplier with subnanosecond response time. Rev. Sci. Instrum. 47, 537 (1976)ADSCrossRefGoogle Scholar
  83. 4.71
    A.T. Young: Undesirable effects of cooling photomultipliers. Rev. Sci. Instrum. 38, 1336 (1967)ADSCrossRefGoogle Scholar
  84. 4.72
    J. Sharpe, C. Eng: “Dark Current in Photomultiplier Tubes”, EMI Ltd. Information Document. Ref. R/P021Y70Google Scholar
  85. 4.73
    Phototubes and Photocells, RCA ManualGoogle Scholar
  86. 4.74
    J.F. James: On the use of a photomultiplier as a photon counter. Mon. Not. R. Astron. Soc. 137, 15 (1967)ADSGoogle Scholar
  87. 4.75
    H.A.W. Tothill: “Measurement of Very Low Spectral Intensities”; EMI, Ltd. Document Ref. R/P029Z70 R.G. Tull: A comparison of photon counting and current measuring techniques in spectrophotometry. Appl. Opt. 7, 2023 (1968)Google Scholar
  88. 4.76
    L.M. Biberman, S. Nudelman (eds.): Photoelectronic Imaging Devices (Plenum Press, New York 1971)Google Scholar
  89. 4.77
    G.A. Morton, A.D. Schnitzler: “Cascade Image Intensifiers”, in Ref. 4.76, p. 119 ffGoogle Scholar
  90. 4.78
    Catalogue on Image-Intensifier and Image Converter Tubes (RCA, Harrison, N.J. 1976)Google Scholar
  91. 4.79
    S. Jeffers, W. Weller: “Image Intensifier Optical Multichannel Analyzer for Astronomical Spectroscopy”, in Advances in Electronics of Electron Physics, Vol. 40 B (Academic Press, New York 1976) p. 887 ffGoogle Scholar
  92. 4.80
    T.S. Moss, G.J. Burrell, B. Ellis: Semiconductor Opto-Electronics (Butterworths, London 1973)Google Scholar
  93. 4.81
    M. Bleicher: Halbleiter-Optoelektronik (Hüthig-Verlag, Heidelberg 1976)Google Scholar
  94. 4.82
    The Opto-Electronics Data Book (Texas Instruments, Dallas, Tex. 1978)Google Scholar
  95. 4.83
    H. Melchior: “Demodulation and Photodetection Techniques”, in Laser Handbook, Vol. 1, ed. by F.T. Arrecchi, E.O. Schulz-Dubois (NorthHolland, Amsterdam 1972) p. 725 ffGoogle Scholar
  96. 4.84
    H. Melchior: Sensitive high speed photodetectors for the demodulation of visible and near infrared light. J. Lumin. 7, 390 (1973)CrossRefGoogle Scholar
  97. 4.85
    H. Melchior, M.B. Fischer, F.R. Arams: Photodetectors for optical communication systems. Proc. IEEE 58, 1466 (1970)CrossRefGoogle Scholar
  98. 4.86
    D. Long: “Photovoltaic and Photoconductive Infrared Detectors”, in Ref. 4.56, p. 101 ffGoogle Scholar
  99. 4.87
    E. Sakuma, K.M. Evenson: Characteristics of tungsten-nickel point contact diodes used as laser harmonic generation mixers. IEEE J. QE-1O, 599 (1974)CrossRefGoogle Scholar
  100. 4.88
    Princeton Applied Research Corp.: Information Catalogue on the OMA system (Princeton, N.J. 1977) B & M-Spektronik Puchheim/München, Information sheet on the OSA-systemGoogle Scholar
  101. 4.89a
    OMA Vidicon Detectors, PAR Information sheet on Optical Multichannel Analysers (Princeton Applied Research, Princeton, N.J. 1978)Google Scholar
  102. 4.89b
    J.L. Weber: “Gated Optical Multichannel Analyzer for Time Resolved Spectroscopy”, SPIE, Conf. Proc. Vol. 82 (1976) p. 60 ff (SPIE, Palos Verdes Estates, Calif.)ADSCrossRefGoogle Scholar
  103. 4.90
    L. Perko, J. Haas, D. Osten: “Cooled and Intensified Array Detectors for Optical Spectroscopy”, Proceedings of SPIE 21st Int. Technical Symposium and Instr. Display, Vol. 116 (SPIE, Palos Verdes Estates, Calif.)Google Scholar
  104. 4.91
    Signal Averagers. Princeton Applied Research Information sheet (Princeton, N.J. 1978)Google Scholar
  105. 4.92
    Biomation, Palo Alto, Calif. Information sheet on transient recordersGoogle Scholar
  106. 4.93
    C. Morgan: “Digital signal processing”. Laser Focus 13, 52 (Nov. 1977) Handshake; Information sheets on Waveform Digitizing Instruments (Tektronix, Inc., Beaverton, Ore. 1979)ADSGoogle Scholar
  107. 4.94
    E. Wolf (ed.): Progress in Optics (North-Holland, Amsterdam 1970–1977)Google Scholar
  108. 4.95
    R. Kingslake (ed.): Applied Optics and Optical Engineering (Academic Press, New York, London 1965)Google Scholar
  109. 4.96
    A.C.S. van Heel (ed.): Advanced Optical Techniques (North-Holland, Amsterdam 1967)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1981

Authors and Affiliations

  • Wolfgang Demtröder
    • 1
  1. 1.Fachbereich PhysikUniversität KaiserslauternKaiserslauternFed. Rep. of Germany

Personalised recommendations