Skip to main content

Widths and Profiles of Spectral Lines

  • Chapter

Part of the book series: Springer Series in Chemical Physics ((CHEMICAL,volume 5))

Abstract

Spectral lines in discrete absorption or emission spectra are never strictly monochromatic. Even with the very high resolution of interferometers one observes a spectral distribution I(v) of the absorbed or emitted intensity around the central frequency v0 = (Ei - Ek)/h corresponding to a molecular transition with the energy difference ∆E = Ei - Ek between upper and lower level. The function I(v) in the vicinity of v0 is called the line profile (see Fig.3.1). The frequency interval δv = ∣v2 - v1∣ between the two frequencies vl and v2 for which I(v1) = I(v2) = I(v0)/2 is the full width at half maximum of the line (FWHM), often shortly called the linewidth or half— width of the spectral line.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. I.I. Sobelman: Atomic Spectra and Radiative Transitions, Springer Series in Chemical Physics, Vol. 1 (Springer, Berlin, Heidelberg, New York 1979)

    Book  Google Scholar 

  2. W.R. Hindmarsh, J.M. Farr: “Collision Broadening of Spectral Lines by Neutral Atoms”, in Progress in Quantum Electronics, Vol. 2, Part 4, ed. by J.H. Sanders, S. Stenholm (Pergamon Press, Oxford 1973

    Google Scholar 

  3. “Line “ (g 1973) R.G. Breen: Line Width , in Handbuch der Physik, Vol. 27, ed. by S. Flügge (Springer, Berlin 1964) p. 1

    Google Scholar 

  4. S.N. Dobryakov, Ya.S. Lebedev: Analysis of spectral lines whose profile is described by a composition of Gaussian and Lorentz profiles. Sov. Phys. Dokl. 13, 9 (1969)

    Google Scholar 

  5. A. Unsöld: Physik der Sternatmosphären (Springer, Berlin, Heidelberg, New York 1955)

    Book  MATH  Google Scholar 

  6. E. Lindholm: “Pressure Broadening of Spectral Lines”; Ark. Mat. Astron. Fys. 32A, Nr. 17 (1945)

    Google Scholar 

  7. G. Traving: Über die Theorie der Druckverbreiterung von Spektral— linien (Verlag Braun, Karlsruhe 1960)

    Google Scholar 

  8. F. Schuler, W. Behmenburg: Perturbation of spectral lines by atomic interactions. Phys. Rep. 12C, 274 (1974)

    Article  ADS  Google Scholar 

  9. See, for instance, D. Terhaar: Elements of Statistical Mechanics (Pergamon, New York 1954 and 1977)

    Google Scholar 

  10. A. Gallagher: “The Spectra of Colliding Atoms”, in Atomic Physics, Vol. 4, ed. by G. zu Putlitz, E.W. Weber, A. Winnaker (Plenum, New York 1975)

    Google Scholar 

  11. K. Niemax, G. Pichler: Determination of van der Waals constants from the red wings of self-broadened Cs principal series lines. J. Phys. B, Atom. Mol. Phys. 8, 2718 (1975)

    Article  ADS  Google Scholar 

  12. R.J. Exton, W.L. Snow: Line shapes for satellites and inversion of the data to obtain interaction potentials. J. Quant. Spectrosc. Radiat. Transfer 20, 1 (1978)

    Article  ADS  Google Scholar 

  13. H. Griem: Plasma Spectroscopy (McGraw-Hill, New York 1964)

    Google Scholar 

  14. J. Ward, J. Cooper, E.W. Smith: Correlation effects in the theory of combined Doppler and pressure broadening. J. Quant. Spectrosc. Radiat. Transfer 14, 555 (1974)

    Article  ADS  Google Scholar 

  15. P.R. Berman, W.E. LambJr.: , Influence of resonant and foreign gas collisions on line shapes. Phys. Rev. 187, 221 (1969)

    Article  ADS  Google Scholar 

  16. J. Hirschfelder, Ch.F. Curtiss, R.B. Bird: Molecular Theory of Gases and Liquids (Wiley, New York, 1954) “GaseousC.C. Davis, T.A. King: Gaseous Ion Lasers”, in Advances in Quantum Electronics, Vol. 3, ed. by D.W. Godwin (Academic Press, New York 1975)

    MATH  Google Scholar 

  17. R.S. Eng, A.R. Calawa, T.C. Harman, P.L. Kelley: Collisional narrowing of infrared water vapor transitions. Appl. Phys. Lett. 21, 303 (1972)

    Article  ADS  Google Scholar 

  18. J. Hall: “The Line Shape Problem in Laser Saturated Molecular Absorption”, in Lecture Notes in Theoretical Physics, Vol. 12A, ed. by K. Mahanthappa, W. Brittin (Gordon and Brach, New York 1971)

    Google Scholar 

  19. D.S. McClure: “Electronic Spectra of Molecules and Ions in Crystals”, in Solid States Physics, Vols. 8 and 9, ed. by F. Seitz, and D. Turnbull (Academic Press, New York 1959)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Demtröder, W. (1981). Widths and Profiles of Spectral Lines. In: Laser Spectroscopy. Springer Series in Chemical Physics, vol 5. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-08257-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-08257-7_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-08259-1

  • Online ISBN: 978-3-662-08257-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics