Widths and Profiles of Spectral Lines

  • Wolfgang Demtröder
Part of the Springer Series in Chemical Physics book series (CHEMICAL, volume 5)


Spectral lines in discrete absorption or emission spectra are never strictly monochromatic. Even with the very high resolution of interferometers one observes a spectral distribution I(v) of the absorbed or emitted intensity around the central frequency v0 = (Ei - Ek)/h corresponding to a molecular transition with the energy difference ∆E = Ei - Ek between upper and lower level. The function I(v) in the vicinity of v0 is called the line profile (see Fig.3.1). The frequency interval δv = ∣v2 - v1∣ between the two frequencies vl and v2 for which I(v1) = I(v2) = I(v0)/2 is the full width at half maximum of the line (FWHM), often shortly called the linewidth or half— width of the spectral line.


Line Profile Inelastic Collision Elastic Collision Line Shift Doppler Width 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 3.1
    I.I. Sobelman: Atomic Spectra and Radiative Transitions, Springer Series in Chemical Physics, Vol. 1 (Springer, Berlin, Heidelberg, New York 1979)CrossRefGoogle Scholar
  2. 3.2
    W.R. Hindmarsh, J.M. Farr: “Collision Broadening of Spectral Lines by Neutral Atoms”, in Progress in Quantum Electronics, Vol. 2, Part 4, ed. by J.H. Sanders, S. Stenholm (Pergamon Press, Oxford 1973Google Scholar
  3. 3.3
    “Line “ (g 1973) R.G. Breen: Line Width , in Handbuch der Physik, Vol. 27, ed. by S. Flügge (Springer, Berlin 1964) p. 1Google Scholar
  4. 3.4
    S.N. Dobryakov, Ya.S. Lebedev: Analysis of spectral lines whose profile is described by a composition of Gaussian and Lorentz profiles. Sov. Phys. Dokl. 13, 9 (1969)Google Scholar
  5. 3.5
    A. Unsöld: Physik der Sternatmosphären (Springer, Berlin, Heidelberg, New York 1955)zbMATHCrossRefGoogle Scholar
  6. 3.6
    E. Lindholm: “Pressure Broadening of Spectral Lines”; Ark. Mat. Astron. Fys. 32A, Nr. 17 (1945)Google Scholar
  7. 3.7
    G. Traving: Über die Theorie der Druckverbreiterung von Spektral— linien (Verlag Braun, Karlsruhe 1960)Google Scholar
  8. 3.8
    F. Schuler, W. Behmenburg: Perturbation of spectral lines by atomic interactions. Phys. Rep. 12C, 274 (1974)ADSCrossRefGoogle Scholar
  9. 3.9
    See, for instance, D. Terhaar: Elements of Statistical Mechanics (Pergamon, New York 1954 and 1977)Google Scholar
  10. 3.10
    A. Gallagher: “The Spectra of Colliding Atoms”, in Atomic Physics, Vol. 4, ed. by G. zu Putlitz, E.W. Weber, A. Winnaker (Plenum, New York 1975)Google Scholar
  11. 3.11
    K. Niemax, G. Pichler: Determination of van der Waals constants from the red wings of self-broadened Cs principal series lines. J. Phys. B, Atom. Mol. Phys. 8, 2718 (1975)ADSCrossRefGoogle Scholar
  12. 3.12
    R.J. Exton, W.L. Snow: Line shapes for satellites and inversion of the data to obtain interaction potentials. J. Quant. Spectrosc. Radiat. Transfer 20, 1 (1978)ADSCrossRefGoogle Scholar
  13. 3.13
    H. Griem: Plasma Spectroscopy (McGraw-Hill, New York 1964)Google Scholar
  14. 3.14
    J. Ward, J. Cooper, E.W. Smith: Correlation effects in the theory of combined Doppler and pressure broadening. J. Quant. Spectrosc. Radiat. Transfer 14, 555 (1974)ADSCrossRefGoogle Scholar
  15. 3.15
    P.R. Berman, W.E. LambJr.: , Influence of resonant and foreign gas collisions on line shapes. Phys. Rev. 187, 221 (1969)ADSCrossRefGoogle Scholar
  16. 3.16
    J. Hirschfelder, Ch.F. Curtiss, R.B. Bird: Molecular Theory of Gases and Liquids (Wiley, New York, 1954) “GaseousC.C. Davis, T.A. King: Gaseous Ion Lasers”, in Advances in Quantum Electronics, Vol. 3, ed. by D.W. Godwin (Academic Press, New York 1975)zbMATHGoogle Scholar
  17. 3.18
    R.S. Eng, A.R. Calawa, T.C. Harman, P.L. Kelley: Collisional narrowing of infrared water vapor transitions. Appl. Phys. Lett. 21, 303 (1972)ADSCrossRefGoogle Scholar
  18. 3.19
    J. Hall: “The Line Shape Problem in Laser Saturated Molecular Absorption”, in Lecture Notes in Theoretical Physics, Vol. 12A, ed. by K. Mahanthappa, W. Brittin (Gordon and Brach, New York 1971)Google Scholar
  19. 3.20
    D.S. McClure: “Electronic Spectra of Molecules and Ions in Crystals”, in Solid States Physics, Vols. 8 and 9, ed. by F. Seitz, and D. Turnbull (Academic Press, New York 1959)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1981

Authors and Affiliations

  • Wolfgang Demtröder
    • 1
  1. 1.Fachbereich PhysikUniversität KaiserslauternKaiserslauternFed. Rep. of Germany

Personalised recommendations