Skip to main content

Chemical Analysis with Multi-Dimensional and On-Line Selectivity Using Laser Spectroscopy Combined with Mass or Species Separation

  • Chapter
Laser in Environmental and Life Sciences

Abstract

Chemical trace and ultra-trace analysis has reached an exceptionally high technological level during the last decades. This is mainly due to the combination of two or even more analytical methods which resulted in a “multi-dimensional” selectivity. The leading “two-dimensional” analytical technique is gas chromatography-mass spectrometry. The price for this high technological standard is a time-consuming sample preparation. Thus, species-selective detection of traces of organic pollutants (e.g. dioxins or pesticides) may take days or even weeks. Therefore, these conventional methods of trace analysis are not adapted to special problems such as:

  • rapid measurement for fast counter measures in the case of chemical accidents

  • trace analysis of dynamic chemical processes, e.g. combustion processes

  • large amounts of samples, e.g. close-meshed spot checks of polluted areas or biochemical and medical or atmospheric analytics

A prerequisite to solve these problems is the availability of rapid on-line or mobile on-site methods of selective detection. Their development is a challenge of modern technology and subject of modern research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Andrews D (1990) Lasers in chemistry. Springer, Berlin

    Book  Google Scholar 

  • Andrews D (1994) Applied laser spectroscopy: techniques, instrumentation and application. VCH Verlag Chemie, Weinheim

    Google Scholar 

  • Antonov V, Knyazev I, Letokhov V, Matiuk V, Movshev V and Potapov V (1978) Stepwise laser photoionization of molecules in a mass spectrometer: a new method for probing and detection of polyatomic molecules. Optics Lett 3: 37–39

    Article  Google Scholar 

  • Antonov V, Letokhov V, Matveyets Y and Shibanov A (1982) Sputtering of neutral molecules and molecular ions from the adenine crystal surface induced by the UV picosecond laser pulse. Laser Chem 1: 37–43

    Article  Google Scholar 

  • Ban E, Nam H-S and Yoo Y (2001) Competitive immunoassay for recombinant hirudin using capillary electrophoresis with laser-induced fluorescence detection. J Chromatogr A 924: 337–344

    Article  Google Scholar 

  • Baumbach J and Eiceman G (1999) Ion mobility spectrometry. Appl Spectrosc 53:338A - 353A

    Google Scholar 

  • Berden G, Peters R and Meijer G (2000) Cavity ring-down spectroscopy: experimental schemes and applications. Int Rev Phys Chem 19: 565 607

    Google Scholar 

  • Bergmann T, Martin TP and Schaber H (1990) High-resolution time-of-flight mass spec-trometers: Part III, Reflectron Design. Rev Scientific Instrum 61: 2592–2600

    Google Scholar 

  • Bernstein R (1982) Systematics of multiphoton ionization fragmentation of polyatomic molecules. J Phys Chem 86: 1178–1184

    Article  Google Scholar 

  • Bier M, Amy J, Cooks R, Syka J, Ceja P and Stafford G (1987) Tandem quadrupole mass spectrometry for the study of surface-induced dissociation. Int J Mass Spectrom Ion Proc 77: 31–47

    Article  Google Scholar 

  • Boesl U (1999) Multiphoton Excitation in Mass Spectrometry. IN: C. McNeil; Encyclopedia of Spectroscopy and Spectrometry. Academic Press, 1411–1424

    Google Scholar 

  • Boesl U (2000) Laser mass spectrometry for environmental and industrial chemical trace analysis. J Mass Spectrom 35: 289–304

    Article  Google Scholar 

  • Boesl U, Grotemeyer J, Walter K and Schlag E (1987) A high resolution time-of-flight mass spectrometer with laser desorption and laser ionization source. Anal Instrum 16: 151–171

    Article  Google Scholar 

  • Boesl U, Heger H, Zimmermann R, Püffel P and Nagel H (2000) Laser mass spectrometry in trace analysis. IN: R. Meyers; Encyclopedia of Analytical Chemistry. John Wiley & Sons, Chichester, 2087–2118

    Google Scholar 

  • Boesl U, Neusser H and Schlag E (1982) Secondary excitation of ions in a multiphoton mass spectrometer. Chem Phys Lett 87: 1

    Article  Google Scholar 

  • Boesl U, Neusser HJ and Schlag EW (1978) Two-Photon Ionization of Polyatomic Molecules in a Mass Spectrometer. Z Naturforsch 33A: 1546–1548

    Google Scholar 

  • Boesl U and Rink J (2002) Organic trace compounds in soil samples: Investigation of laser desorption and resonant multi–photon ionization for fast on–site analysis. IN: Laser Based Environmental and Process Measurement, edited by R.Noll and W.Schade (Springer, proposed date 2003, ISBN 3–540–42945–X)

    Google Scholar 

  • Boesl U, Weinkauf R and Schlag EW (1992) Reflectron time-of-flight mass spectrometry and laser excitation for the analysis of neutrals, ionized molecules and secondary fragments. Int J Mass Spectrom Ion Phys 112: 121–166

    Article  Google Scholar 

  • Bushaw B, Juston F, Nörtershäuser W, Trautmann N, Haan PV-d and Wendt K (1997) Multiple resonance RIMS measurements of calcium iostopes using diode lasers. IN: Resonance Ionization Spectroscopy 1997. AIP, 115–118

    Google Scholar 

  • Bushaw B, Nörtershäuser W and Wendt K (1999) Lineshapes and optical selelctivity in high-resolution double-resonance ionization mass spectrometry. Spectrochim Acta B 54: 321–332

    Article  Google Scholar 

  • Clemett S, Chillier X, Gillette S, Zare R, Maurette M, Engrand C and Kurat G (1998) Observation of indigenous polycyclic aromatic hydrocarbons in ‘giant’ carbonaceous Antarctic micrometeorites. Origins-of-Life-and-Evolution-of-the-Biosphere 28: 425–448

    Article  Google Scholar 

  • Cotter R (1984) Laser and mass spectrometry. Anal Chem 56: 485A

    Google Scholar 

  • de Hoffmann E (1996) Tandem mass spectrometry: a primer. J Mass Spectrom 31:129–137 Dreizler A, Sick V and Wolfrum J (1997) Applied laser spectrocopy in technical combustion systems. Ber Bunsenges Phys Chem 101: 771–782

    Google Scholar 

  • Fassett J, Moore L, Travis J and DeVoe J (1985) Laser resonance ionization mass spectrometry. Science 230: 262–267

    Article  Google Scholar 

  • Gedanken A, Robin M and Kuebler N (1982) Nonlinear photochemistry in organic, inorganic, and organometallic systems. J Phys Chem 86: 4096–4107

    Article  Google Scholar 

  • Gobeli D, Yang J and El-Sayed M (1985) Laser multiphoton ionization-dissociation mass spectrometry. Chem Rev 85: 529–554

    Article  Google Scholar 

  • Haefliger O and Zenobi R (1998) Laser mass spectrometric analysis of polycyclic aromatic hydrocarbons with wide wavelength range laser multiphoton ionization spectroscopy. Anal Chem 70: 2660–2665

    Article  Google Scholar 

  • Hafner K, Zimmermann R, Rohwer E, Dorfner R and Kettrup A (2001) A capillary-based supersonic jet inlet system for resonance-enhanced laser ionization mass spectrometry: principle and first on-line process analytical applications. Anal Chem 73: 4171–4180

    Article  Google Scholar 

  • Hayes J and Small G (1982) Rotationally cooled laser-induced fluorescence/gas chromatography. Anal Chem: 1202–1204

    Google Scholar 

  • Hayes JM (1987) Analytical spectroscopy in supersonic expansions. Chemical Reviews 87: 745–760

    Article  Google Scholar 

  • Heger H, Boesl U, Zimmermann R, Dorfner R and Kettrup A (1999) On-line resonance-enhanced multiphoton ionization time-of-flight laser mass spectrometry for combined multi-component-pattern analysis and target-compound monitoring: non-chlorinated aromatics and chlorobenzene in flue gases of combustion processes. Eur Mass Spectrom 5: 51–57

    Article  Google Scholar 

  • Herrmann A, Leutwyler S, Schumacher E and Wöste L (1977) Multiphoton ionization: mass selective laser-spectroscopy of Na2 and K2 in molecular beams. Chem Phys Lett 52: 418–425

    Article  Google Scholar 

  • Illenseer C and Löhmannsröben H (2001) Investigation of ion-molecule collisions with la- ser-based ion mobility spectrometry. Phys Chem Chem Phys 3: 2388–2393

    Article  Google Scholar 

  • Johnson PM (1980) Molecular multiphoton ionization spectroscopy. Applied Optics 19: 3920–3925

    Article  Google Scholar 

  • Karas M, Glückmann M and Schäfer J (2000) Ionization in matrix-assisted laser desorption/ionization: singly charged molecular ions are the lucky survivors. J Mass Spectrom 35: 1–12

    Article  Google Scholar 

  • Kaufmann R, Kirsch D and Spengler B (1994) Sequencing of peptides in a time-of-flight mass spectrometer: evaluation of postsource decay following matrix-assisted laser desorption ionisation ( MALDI ). Int J Mass Spectr Ion Proc 131: 355

    Google Scholar 

  • Ke C-B, Su K-D and Lin K-C (2001) Laser-enhanced ionization and laser-induced atomic fluorescence as element-specific detection methods for gas chromatography: Application to organotin analysis. J Chromatogr A 921: 247–253

    Google Scholar 

  • Kleimeyer J, Rose P and Harris J (2001) Determination of ultratrace-level fluorescent tracer concentrations in environmental samples using a combination of HPLC separation and laser-excited fluorescence multiwavelength emission detection: Application to testing of geothermal well brines. Appl Spectrosc 55: 690–700

    Google Scholar 

  • Kompa K, Sick V and Wolfrum V (1993) Laser diagnostics for industrial processes. Special Issue of Ber Bunsenges Phys Chem: 97

    Google Scholar 

  • Köster C, Grotemeyer J and Schlag E (1990) A high pressure pulsed valve for gases, liquids, and supercritical fluids. Z Naturforsch 45a: 1285–1292

    Google Scholar 

  • Kovalenko L, Maechling C, Clemett S, Philippoz J, Zare R and Alexander C (1992) Microscopic organic analysis using two-step laser mass spectrometry: application to meteoric acid residues. Anal Chem 64: 682–690

    Article  Google Scholar 

  • Letokhov V (1986) Laser analytical spectrochemistry. Adam Hilger, Bristol

    Google Scholar 

  • Letokhov VS (1987) Laser photoionization spectroscopy. Academic Press, Orlando Levy D (1981) The Spectroscopy of Very Cold Gases. Science 214: 263–269

    Google Scholar 

  • Löhmannsröben H-G and Roch T (1996) Laserfluoreszenzspektroskopie als extraktions- freies Nachweisverfahren fir PAK und Mineralöle in Bodenproben. IN: H. Günzler; Analytiker Taschenbuch. Springer, Berlin, 217

    Google Scholar 

  • Lubman D (1987) Optically Selective Molecular Spectrometry. Anal Chem 59:31A–40A Lubman D and Kronick M (1982) Mass spectrometry of aromatic molecules with resonance-enhanced multiphoton ionization. Anal Chem 54: 660–665

    Google Scholar 

  • Lubman DM (1990) Lasers and Mass Spectrometry. Oxford University Press, New York Male K and Luong J (2001) Derivatization, stabilization and detection of biogenic amines

    Google Scholar 

  • by cyclodextrin-modified capillary electrophoresis-laser-induced fluorescence detec-tion. J Cromatogr A 926:309–317

    Google Scholar 

  • Mamyrin BA, Karataev VI, Shmikk DV and Zagulin VA (1973) The mass-reflectron, a new nonmagnetic time-of-flight mass spectrometer with high resolution. Sov Phys–JETP 37: 45–48

    Google Scholar 

  • Meijer G, deVries M, Hunziker H and Wendt H (1990) Laser desorption jet-cooling of organic molecules. Appl Phys B5l: 395–403

    Google Scholar 

  • Meijer G, deVries M, Hutziker H and Wendt H (1990) Laser desorption jet-cooling spectroscopy of para-amino benzoic acid monomer, dimer and clusters. J Chem Phys 92: 7625–7635

    Article  Google Scholar 

  • Melanson J, Boulet C and Lucy C (2001) Indirect laser-induced fluorescence detextion for capillary electrophoresis using a violet diode laser. Anal Chem 73: 1809–1813

    Article  Google Scholar 

  • Miclea M, Kunze K, Musa G, Franzke J and Niemax K (2001) The dielectric barrier discharge–a powerful microchip plasma for diode laser spectrometry. Spectrochim Acta B 56: 37–43

    Article  Google Scholar 

  • Morrical B, Fergenson D and Prather K (1998) Coupling two-step laser desorption/ionization with aerosol time-of-flight mass spetrometry for the analysis of individual organic particles. J Am Soc Mass Spectrom 9: 1068–1073

    Article  Google Scholar 

  • Müller P, Bushaw B, Blaum K, Diel S, Geppert C, Trautmann N and Wendt K (2001) Progress in 41 Ca ultratrace determination by diode-laser-based RIMS. IN: Resonance Ionization Spectroscopy 2000. AIP, 155–160

    Google Scholar 

  • Müller P, Bushaw B, Nörtershäuser W and Wendt K (2000) Iosotpe shifts and hyperfine structure in calcium 4snp 1P1 and 4snf F Rydberg states. Eur Phys J D 12:33–44 Nakamura S and Fasol G ( 1997 ) The blue laser diode. Springer

    Google Scholar 

  • Noble C and Prather K (2000) Real-time single particle mass spectrometry: A historical review of a quarter century of the chemical analysis of aerosols. Mass Spectrom Rev 19: 248–274

    Article  Google Scholar 

  • Opsal R and Reilly J (1988) Ionization of alkylbenzenes studied by gas chromatography/laser ionization mass spectrometry. Anal Chem 60: 1060–1065

    Article  Google Scholar 

  • Oser H, Coggiola MJ, Faris GW, Young SE, Volquardsen B and Croseley DR (2001) Development of a jet-REMPI (resonantly enhanced multiphoton ionization) continuous monitor for environmental applications. Appl Opt 40: 859–865

    Article  Google Scholar 

  • Panne U, Dicke C, Duesing R, Niessner R and Bidoglio G (2000) Stimulated raman scattering as an excitation source for time-resolved excitation-emission fluorescence spectroscopy with fiber-optical sensors. Appl Spectrosc 54: 536–547

    Article  Google Scholar 

  • Quentmeier A, Bolshov M and Niemax K (2001) Measurement of uranium isotope ratios in solid samples using laser ablation and diode laser-atomic absorption specgtrometry. Spectrochim Acta B 56: 45–55

    Article  Google Scholar 

  • Schulz C, Sick V, Heinze J and Stricker W (1997) Laser-induced-fluorescence detection of nitric oxide in high-pressure flames with A-X(0,2) excitation. Appl Opt 36: 3227–3232

    Article  Google Scholar 

  • Schulz C, Sick V, Wolfrum J, Drewes V, Maly R and Zahn M (1996) Quantitative 2D singls-shot imaging and mathematical modeling of NO concnetrations and temperatures in a transparent SI engine. IN: Proceedings of the Twenty-Sixth International Symposium on Combustion. The Combustion Institute, Pittsburgh, Pa, 2597–2604

    Google Scholar 

  • Schulz C, Yip B, Sick V and Wolfrum J (1995) A laser-induced fluorescence scheme for imaging nitric oxide in engines. Chem Phys Lett 242: 259–264

    Article  Google Scholar 

  • Shahar T, Dagan S and Amirav A (1998) Laser desorption fast gas chromatography-mass

    Google Scholar 

  • spectrometry in supersonic molecular beams. J Am Soc Mass Spectrom 9:628–637 Smalley RE, Wharton L and Levy DH (1977) Molecular optical spectroscopy with super-sonic beams and jets. Acc Chem Research 10: 139–145

    Google Scholar 

  • Spengler B (1997) Post-source decay analysis in matrix-assisted laser desorption/ionization mass spectrometry of biomolecules. J Mass Spectrom 32: 1019–1036

    Article  Google Scholar 

  • Spengler B, Hinz K and Kaufmann R (1996) Airborne particle analysis. Science 274: 1993–1997

    Article  Google Scholar 

  • Stockel P, Vortisch H, Leisner T, Baumgärtel H (2002) Homogeneous nucleation of supercooled liquid water in levitated microdoplets. J Mol Liquids 96: 153–175

    Article  Google Scholar 

  • Stone E, Gillig K, Ruotolo B, Fuhrer K, Gonin M, Schultz A and Russell D (2001) Surface-induced dissociation on a MALDI-ion mobility-orthogonal time-of-flight mass spectrometer: sequencing peptides from an “in-solution” protein digest. Anal Chem 73: 2233–2238

    Article  Google Scholar 

  • Tan W, Carnelly T, Murphy P, Wang H, Lee J, Barker S, Weinfeld M and Le X (2001) Detection of DNA adducts of benzo[a]pyrene using immunoelectrophoresis with laser-induced fluorescence: Analysis of A549 cells. J Chromatogr A 924: 377–386

    Article  Google Scholar 

  • Uhl R, Franzke J and Haas U (2001) Detection of argon and krypton traces in noble gases by diode laser absorption spectrometry. Appl Phys B 73: 71–74

    Article  Google Scholar 

  • v.Weyssenhoff H, Selzle HL and Schlag EW (1985) Laser-desorbed large molecules in a supersonic jet. Z Naturforsch 40a: 674–676

    Google Scholar 

  • Vertes A, Gijbels R and Adams F, (1993). Laser ionization mass analysis. John Wiley & Sons, New York

    Google Scholar 

  • Wattenberg A, Sobott F, Barth H-D and Brutschy B (2000) Studying non-covalent protein complexes in aqueous solution with laser desorption mass spectrometry. Int J Mass Spectrom 203: 49–57

    Article  Google Scholar 

  • Wattenberg A, Sobott F, H-DBarth and Brutschy B (1999) Laserdesorption Mass spectrometry on liquid beams. Eur J Mass Spectrom 5: 71–76

    Article  Google Scholar 

  • Weickhardt C and Tönnies K (2002) Rapid analysis of complex mixtures by means of resonant laser mass spectrometry. IN: Laser assisted analytical methods in environmental sciences, atmosphere, soils and water. Springer, Berlin, to be published

    Google Scholar 

  • Weickhardt C, Zimmermann R, Boesl U and Schlag EW (1993) Laser mass spectrometry of dibenzodioxin, dibenzofuran and two isomers of dichlorodibenzodioxins: selective ionization. Rap Commun Mass Spectrom 7: 183–185

    Article  Google Scholar 

  • Weickhardt C, Zimmermann R, Schramm K, Boesl U and Schlag EW (1994) Laser mass spectrometry of the di-, tri-and tetrachlorobenzenes: isomer selective ionization and detection. Rap Commun Mass Spectrom 8: 381–384

    Article  Google Scholar 

  • Weinkauf R, Walter K, Weickhardt C, Boesl U and Schlag E (1989) Laser tandem mass spectrometry in a time of flight instrument. Z Naturforsch 44a: 1219

    Google Scholar 

  • Zandee L and Bernstein R (1979) Resonance-enhanced multiphoton ionization and fragmentation of molecular beams: NO, I2, benzene, and butadiene. J Chem Phys 71: 1359–1371

    Article  Google Scholar 

  • Zenobi R, Philippoz J-M, Buseck P and Zare R (1989) Spatially resolved organic analysis of the Allende meteorite. Science 246: 1026

    Article  Google Scholar 

  • Zhan Q, Voumard P and Zenobi R (1995) Application of two-step laser mass spectrometry to the chemical analysis of aerosol particle surfaces. Rap Commun Mass Spectrom 9: 119–127

    Article  Google Scholar 

  • Zimmermann R, Heger H, Blumenstock M, Dorfner R, Schramm K, Boesl U and Kettrup A (1999) On-line Measurement of Chlorobenzene in Waste Incineration Flue Gas as a Surrogate for the Emission of Polychlorinated Dibenzo-p-Dioxins/Furans (1-TEQ) Using Mobile Resonance Laser Ionization Time-of-Flight Mass Spectrometry. Rap Comm Mass Spectrom 13: 307–314

    Article  Google Scholar 

  • Zimmermann R, Lenoir D, Kettrup A, Grebner T, Neusser H and Boesl U (1995) The Ionization Energies of Polychlorinated Dibenzo-p-dioxins: New Experimental Results and Theoretical Studies. Int JMass Spectrom Ion Proc 145: 97–1008

    Google Scholar 

  • Zimmermann R, Lermer C, Schramm KW, Kettrup A and Boesl U (1995) Three-dimensional trace analysis: Combination of gas chromatography, supersonic beam UV spectroscopy and time-of-flight mass spectrometry. Eur Mass Spectrom 1: 341–351

    Google Scholar 

  • Zimmermann R, Rohwer E and Heger H (1999) In-line catalytic derivatization method for selective detection of chlorinated aromatics with a hyphenated gaschromatography/laser mass spectrometry technique: A concept for comprehensive detection of isomeric ensembles. Anal Chem 71: 4148–4153

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Boesl, U. (2004). Chemical Analysis with Multi-Dimensional and On-Line Selectivity Using Laser Spectroscopy Combined with Mass or Species Separation. In: Hering, P., Lay, J.P., Stry, S. (eds) Laser in Environmental and Life Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-08255-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-08255-3_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07309-0

  • Online ISBN: 978-3-662-08255-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics