Skip to main content

Laser Induced Breakdown Spectroscopy (LIBS) in Environmental and Process Analysis

  • Chapter
Laser in Environmental and Life Sciences
  • 319 Accesses

Abstract

Laser induced breakdown spectroscopy, LIBS, is a method utilizing laser ablation and the subsequent atomic emission from the plasma for elemental analysis. Besides the acronym LIBS, today other designations such as LIPS (laser-induced plasma spectroscopy), LA-OES (laser ablation optical emission spectroscopy), or LSS (laser spark spectroscopy) can be found in the literature. Laser ablation is at present the only analytical method that offers direct sampling from any kind of material without sample preparation. So LIBS allows a multielement analysis of virtually all type of materials (gas, solids, liquids) through atomic emission spectroscopy. Today’s availability of reliable and less costly laser sources and improved detectors permits a rapid, on-line, and in-situ analysis with LIBS. This makes LIBS especially attractive for all kind of process analysis and environmental screening and monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aguilera JA, Aragon C, Campos J (1992) Determination of carbon content in steel using laser-induced breakdown spectroscopy. Appl. Spectrosc. 46: 1382–1387

    Google Scholar 

  • Amoruso S, Bruzzese R, Spinelli N, Velotta R (1999) Characterization of laser-ablation plasmas. J. Phys. B 32: R131 - R172

    Article  Google Scholar 

  • Andre N, Geertsen C, Lacour JL, Mauchien P, Sjostrom S (1994) UV Laser ablation-optical emission spectrometry on aluminium alloys in air at atmospheric pressure. Spectrochim. Acta B 49: 1363–1372

    Google Scholar 

  • Anzano JM, Gornushkin IB, Smith BW, Winefordner JD (2000) Laser-induced plasma spectroscopy for plastic identification. Polym. Eng. Sc. 40: 2423–2429

    Google Scholar 

  • Aragon C, Aguilera JA, Penalba F (1999) Improvements in quantitative analysis of steel composition by laser-induced breakdown spectroscopy at atmospheric pressure using an infrared Nd:YAG laser. Appl. Spectrosc. 53: 1259–1267

    Google Scholar 

  • Arca G, Ciucci A, Palleschi V, Rastelli S, Tognoni E (1997) Trace element analysis in water by the laser induced breakdown spectroscopy technique. Appl. Spectrosc. 51: 1102–1105

    Google Scholar 

  • Arnold SD, Cremers DA (1995) Rapid determination of metal particles on air sampling filters using laser-induced breakdown spectroscopy. Amer. Ind. Hyg. Assn. J. 56: 1180–1186

    Google Scholar 

  • Barbini R, Colao F, Fantoni R, Palucci A, Ribezzo S, vanderSteen HJL, Angelone M (1997) Semi-quantitative time resolved LIBS measurements. Appl. Phys. B 65: 101–107

    Google Scholar 

  • Bassiotis I, Diamantopoulou A, Giannoudakos A, Roubani-Kalantzopoulou F, Kompitsas M (2001) Effects of experimental parameters in quantitative analysis of steel alloy by laser-induced breakdown spectroscopy. Spectrochim. Acta B 56: 671–683

    Google Scholar 

  • Bauer HE, Leis F, Niemax K (1998) Laser induced breakdown spectrometry with an échelle spectrometer and and intensified charge coupled device detection. Spectrochim. Acta B 53: 1815–1825

    Google Scholar 

  • Bettis JR (1992) Correlation among the laser-induced breakdown thresholds in solids, liquids, and gases. Appl. Opt. 31: 3448–3452

    Article  Google Scholar 

  • Brech F, Cross L (1962) Optical microemission stimulated by a ruby maser. Appl. Spectrosc. 16: 59

    Google Scholar 

  • Castle BC, Knight AK, Visser K, Smith BW, Winefordner JD (1998) Battery powered laser-induced plasma spectrometer for elemental determinations. J. Anal. At. Spectrom. 13: 589–595

    Google Scholar 

  • Chadwick BL, Body D (2002) Development and commercial evaluation of LIBS chemical analysis technology in the coal power generation industry. Appl. Spectrosc. 56: 70–74

    Google Scholar 

  • Chaleard C, Mauchien P, Andre N, Uebbing J, Lacour JL, Geertsen C (1997) Correction of matrix effects in quantitative elemental analysis with laser-ablation optical-emission spectrometry. J. Anal. At. Spectrom. 12: 183–188

    Google Scholar 

  • Chen G, Yeung ES (1988) Acoustic signal as an internal standard for quantitation in laser-generated plumes. Anal. Chem. 60: 2258–2263

    Google Scholar 

  • Ciucci A, Corsi M, Palleschi V, Rastelli S, Salvetti A, Tognoni E (1999) New procedure for quantitative elemental analysis by laser-induced plasma spectroscopy. Appl. Spectrosc. 53: 960–964

    Google Scholar 

  • Cremers DA (1987) The analysis of metals at a distance using laser-induced breakdown spectroscopy. Appl. Spectrosc. 41: 572–578

    Article  Google Scholar 

  • Cremers DA, Barefield JE, Koskelo AC (1995) Remote elemental analysis by laser-induced breakdown spectroscopy using a fiber-optic cable. Appl. Spectrosc. 49: 857–860

    Google Scholar 

  • Cremers DA, Radziemski LJ (1983) Detection of chlorine and fluorine in air by laser- induced breakdown spectrometry. Anal. Chem. 55: 1252–1256

    Google Scholar 

  • Cremers DA, Radziemski LJ (1985) Direct detection of beryllium on filters using the laser spark. Appl. Spectrosc. 39: 57–63

    Google Scholar 

  • Eppler AS, Cremers DA, Hickmott DD, Ferris MJ, Koskelo AC (1996) Matrix effects in the detection of Pb and Ba in soils using laser-induced breakdown spectroscopy. Appl. Spectrosc. 50: 1175–1181

    Google Scholar 

  • Essien M, Radziemski LJ, Sneddon J (1988) Detection of Cd, Pb and zinc in aerosols by laser-induced breakdown spectrometry. J. Anal. Atom. Spectrom. 3: 985–988

    Google Scholar 

  • Fichet P, Mauchien P, Moulin C (1999) Determination of impurities in uranium and plutonium dioxides by laser-induced breakdown spectroscopy. Appl. Spectrosc. 53: 11111117

    Google Scholar 

  • Fichet P, Mauchien P, Wagner JF, Moulin C (2001) Quantitative elemental determination in water and oil by laser induced breakdown spectroscopy. Anal. Chim. Acta 429: 269278

    Google Scholar 

  • Fink H, Panne U, Niessner R (2001) Analysis of recycled thermoplasts from consumer electronics by laser-induced plasma spectroscopy. Anal. Chim. Acta 440: 17–25

    Google Scholar 

  • Florek S, Haisch C, Okruss M, Becker-Ross H (2001) A new, versatile echelle spectrometer relevant to laser induced plasma applications. Spectrochim. Acta B 56: 1027–1034

    Google Scholar 

  • Garcia CC, Corral M, Vadillo JM, Laserna JJ (2000) Angle-resolved laser-induced breakdown spectrometry for depth profiling of coated materials. Appl. Spectrosc. 54: 10271031

    Google Scholar 

  • Geertsen C, Lacour JL, Mauchien P, Pierrard L (1996) Evaluation of laser ablation optical emission spectrometry for microanalysis in aluminium samples. Spectrochim. Acta B 51: 1403–1416

    Google Scholar 

  • Gonzalez A, Ortiz M, Campos J (1995) Determination of sulfur content in steel by laser- produced plasma atomic emission spectroscopy. Appl. Spectrosc. 49: 1632–1635

    Google Scholar 

  • Goode SR, Morgan SL, Hoskins R, Oxsher A (2000) Identifying alloys by laser-induced breakdown spectroscopy with a time-resolved high resolution echelle spectrometer. J. Anal. At. Spectrom. 15: 1133–1138

    Google Scholar 

  • Gornushkin IB, Ruiz-Medina A, Anzano JM, Smith BW, Winefordner JD (2000) Identifi- cation of particulate materials by correlation analysis using a microscopic laser in- duced breakdown spectrometer. J. Anal. At. Spectrom. 15: 581–586

    Google Scholar 

  • Gornushkin IB, Smith BW, Potts GE, Omenetto N, Winefordner JD (1999) Some considerations on the correlation between signal and background in laser-induced breakdown spectroscopy using single-shot analysis. Anal. Chem. 71: 5447–5449

    Google Scholar 

  • Grant KJ, Paul GL, O’Neill JA (1991) Quantitative elemental analysis of iron ore by laser-induced breakdown spectroscopy. Appl. Spectrosc. 45: 701–705

    Google Scholar 

  • Griem HR (1997) Principles of Plasma Spectroscopy. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Gruber J, Heitz J, Strasser H, Bauerle D, Ramaseder N (2001) Rapid in-situ analysis of liq- uid steel by laser-induced breakdown spectroscopy. Spectrochim. Acta B 56: 685–693

    Google Scholar 

  • Hahn DW, Lunden MM (2000) Detection and analysis of aerosol particles by laser-induced breakdown spectroscopy. Aerosol Sci. Technol. 33: 30–48

    Google Scholar 

  • Haisch C, Liermann J, Panne U, Niessner R (1997) Characterization of colloidal particles by laser-induced plasma spectroscopy (LIPS). Anal. Chim. Acta 346: 23–35

    Google Scholar 

  • Haisch C, Niessner R, Matveev OI, Panne U, Omenetto N (1996) Development of a sensor for element-specific determination of chlorine in gases by laser-induced-breakdown spectroscopy (LIBS). Fresenius J. Anal. Chem. 356: 21–26

    Google Scholar 

  • Haisch C, Panne U, Niessner R (1998) Combination of an intensified charge coupled device with an echelle spectrograph for analysis of colloidal material by laser-induced plasma spectroscopy. Spectrochim. Acta B 53: 1657–1667

    Google Scholar 

  • Ito Y, Ueki O, Nakamura S (1995) Determination of colloidal iron in water by laser-induced breakdown spectroscopy. Anal. Chim. Acta 299: 401–405

    Google Scholar 

  • Jensen LC, Langford SC, Dickinson JT, Addleman RS (1995) Mechanistic studies of laser-induced breakdown spectroscopy of model environmental-samples. Spectrochim. Acta B 50: 1501–1519

    Google Scholar 

  • Kagawa K, Kawai K, Tani M, Kobayshi T (1994) XeC1 Excimer laser-induced shock wave plasma and its application to emission spectrochemical analysis. Appl. Spectrosc. 48: 198–205

    Google Scholar 

  • Kim DE, Yoo KJ, Park HK, Oh KJ, Kim DW (1997) Quantitative-analysis of aluminum impurities in zinc alloy by laser-induced breakdown spectroscopy. Appl. Spectrosc. 51: 22–29

    Google Scholar 

  • Kossakovski D, Beauchamp JL (2000) Topographical and chemical microanalysis of surfaces with a scanning probe microscope and laser-induced breakdown spectroscopy. Anal. Chem. 72: 4731–4737

    Google Scholar 

  • Kurniawan H, Kagawa K, Okamoto M, Ueda M, Kobayashi T, Nakajima S (1996) Emission spectrochemical analysis of glass containing Li and K in high concentrations using a XeC1 excimer laser-induced shock wave plasma. Appl. Spectrosc. 50: 299–305

    Google Scholar 

  • Lancaster ED, McNesby KL, Daniel RG, Miziolek AW (1999) Spectroscopic analysis of fire suppressants and refrigerants by laser-induced breakdown spectroscopy. Appl. Opt. 38: 1476–1480

    Google Scholar 

  • Lee YI, Sneddon J (1994) Direct and rapid determination of potassium in standard solid glasses by excimer laser ablation plasma atomic emission spectrometry. Analyst 119: 1441–1443

    Article  Google Scholar 

  • Lee YI, Sneddon J (1999) Laser-induced breakdown spectrometry. In: Sneddon J (ed.) Advances in Atomic Spectroscopy. Jai Press Inc, Hampton Hill, pp. 235–288

    Google Scholar 

  • Lochte-Holtgreven W (1968) Evaluation of Plasma Parameters. In: Lochte-Holtgreven W (ed.) Plasma Diagnostics. North-Holland Publ. Company, Amsterdam, pp. 135–213

    Google Scholar 

  • Lorenzen CJ, Carlhoff C, Hahn U, Jogwich M (1992) Applications of laser-induced emission spectral analysis for industrial process and quality control. J. Anal. At. Spectrom. 7: 1029–1035

    Google Scholar 

  • Marquardt BJ, Goode SR, Angel SM (1996) In situ determination of lead in paint by laser- induced breakdwon spectroscopy using a fiber optic probe. Anal. Chem. 68: 977–981

    Google Scholar 

  • Martin M, Cheng MD (2000) Detection of chromium aerosol using time-resolved laser- induced plasma spectroscopy. Appl. Spectrosc. 54: 1279–1285

    Google Scholar 

  • Miller JC, ed. (1994) Laser Ablation. Springer Verlag, Berlin

    Google Scholar 

  • Miller JC Haglund RF, eds. (1998) Laser Ablation and Desorption. Academic Press, San Diego

    Google Scholar 

  • Moenke-Blankenburg L (1989) Laser Micro Analysis. John Wiley & Sons, New York Morgan CG (1975) Laser-induced breakdown of gases. Rep. Prog. Phys. 38:621–665

    Google Scholar 

  • Multari RA, Foster LE, Cremers DA, Ferris MJ (1996) Effect of sampling geometry on elemental emissions in laser-induced breakdown spectroscopy. Appl. Spectrosc. 50: 1483–1499

    Google Scholar 

  • Nakamura S, Ito Y, Sone K, Hiraga H, Kaneko K (1996) Determination of an iron suspension in water by laser-induced breakdown spectroscopy with two sequential laser pulses. Anal. Chem. 68: 2981–2986

    Google Scholar 

  • Neuhauser RE, Ferstl B, Haisch C, Panne U, Niessner R (1999) Design of a low-cost detec- tion system for laser-induced plasma spectroscopy. Rev. Sci. Instrum. 70: 3519–3522

    Google Scholar 

  • Neuhauser RE, Panne U Niessner R (2000) Utilization of fiber optics for remote sensing by laser-induced plasma spectroscopy (LIPS). Appl. Spectrosc. 54: 923–927

    Google Scholar 

  • Neuhauser RE, Panne U, Niessner R, Petrucci GA, Cavalli P, Omenetto N (1997) On-line and in situ detection of lead aerosols by plasma spectroscopy and laser-excited atomic fluorescence spectroscopy. Anal. Chim. Acta 346: 37–48

    Google Scholar 

  • Neuhauser RE, Panne U, Niessner R, Wilbring P (1999) On-line monitoring of chromium aerosols in industrial exhaust streams by laser-induced plasma spectroscopy (LIPS). Fresenius J. Anal. Chem. 364: 720–726

    Google Scholar 

  • Ng CW, Cheung NH (2000) Detection of sodium and potassium in single human red blood cells by 193-nm laser ablative sampling: A feasibility demonstration. Anal. Chem. 72: 247–250

    Google Scholar 

  • Ng CW, Ho FW, Cheung NH (1997) Spectrochemical analysis of liquids using laser-induced plasma emissions: Effects of laser wavelength on plasma properties. Appl. Spectrosc. 51: 976–983

    Google Scholar 

  • Niemax K, Sdorra W (1990) Optical emission spectrometry and laser-induced fluorescence of laser produced sample plumes. Appl. Opt. 29:

    Google Scholar 

  • Noll R, Bette H, Brysch A, Kraushaar M, Monch I, Peter L, Sturm V (2001) Laser-induced breakdown spectrometry - applications for production control and quality assurance in the steel industry. Spectrochim. Acta B 56: 637–649

    Google Scholar 

  • Nordstrom RJ (1995) Study of laser-induced plasma emission spectra of N2, 02, and ambient air in the region 350 nm to 950 nm. Appl. Spectrosc. 49: 1490–1499

    Google Scholar 

  • Ottesen DK (1992) Laser Spark Emission Spectroscopy of Individual Coal Particles. In: Meuzelaar HLC (ed.) Advances in Coal Spectroscopy. Plenum Press, New York, pp. 91–118

    Google Scholar 

  • Ottesen DK, Baxter LL, Radziemski U, Burrows JF (1991) Laser spark emission spectroscopy for in situ, real-time monitoring of pulverized coal particle composition. Energ. Fuel 5: 304

    Google Scholar 

  • Ottesen DK, Wang JCF, Radziemski U (1989) Real-Time laser spark spectroscopy of particulates in combustion environments. Appl. Spectrosc. 43: 967–976

    Google Scholar 

  • Palanco S, Baena JM, Laserna JJ (2002) Open-path laser-induced plasma spectrometry for remote analytical measurements on solid surfaces. Spectrochim. Acta B 57: 591–599

    Google Scholar 

  • Palanco S, Klassen M, Skupin J, Hansen K, Schubert E, Sepold G, Laserna JJ (2001) Spec- troscopic diagnostics on CW-laser welding plasmas of aluminum alloys. Spectrochim. Acta B 56: 651–659

    Google Scholar 

  • Panne U, Haisch C, Clara M, Niessner R (1998) Analysis of glass and glass melts during the vitrification of fly and bottom ashes by laser-induced plasma spectroscopy. Part 1: Normalization and plasma diagnostics,. Spectrochimica Acta B 53: 1957–1968

    Google Scholar 

  • Panne U, Haisch C, Clara M, Niessner R (1998) Analysis of glass and glass melts during the vitrification of fly and bottom ashes by laser-induced plasma spectroscopy. Part 2: Process analysis. Spectrochim. Acta B 53: 1969–1981

    Google Scholar 

  • Panne U, Neuhauser RE, Haisch C, Fink H, Niessner R (2002) Remote analysis of a mineral melt by laser-induced plasma spectroscopy. Appl. Spectrosc. 56: 375–380

    Google Scholar 

  • Panne U, Neuhauser RE, Theisen M, Fink H, Niessner R (2001) Analysis of heavy metal aerosols on filters by laser-induced plasma spectroscopy. Spectrochim. Acta B 56: 839-850

    Google Scholar 

  • Parigger C, Lewis JWL (1993) Measurements of sodium chloride concentration in water droplets using laser-induced plasma spectroscopy. Opt. Comm. 12: 163–173

    Google Scholar 

  • Radziemski U (1994) Review of selected analytical applications of laser plasmas and laser ablation, 1987–1994. Microchem. J. 50: 218–234

    Article  Google Scholar 

  • Radziemski LJ, Cremers DA, eds. (1989) Laser-Induced Plasmas and Applications.Marcel Dekker, New York

    Google Scholar 

  • Ready JF (1971) Effects of High-Power Laser Radiation. Academic Press, New York Romero D, Laserna JJ (1997) Multielemental chemical imaging using laser induced breakdown spectrometry. Anal. Chem. 69: 2871–2876

    Google Scholar 

  • Rusak DA, Castle BC, Smith BW, Winefordner JD (1998) Recent trends and the future of laser-induced plasma spectroscopy. TrAC, Trends Anal. Chem. 17: 453–461

    Google Scholar 

  • Russo RE (1995) Laser-Ablation. Appl. Spectrosc. 49: A14 - A28

    Article  Google Scholar 

  • Sabsabi M, Cielo P (1995) Quantitative analysis of copper alloys by laser-produced plasma spectrometry. J. Anal. Atom. Spectrom. 10: 643–647

    Google Scholar 

  • Sacchi CA (1991) Laser-induced eletric breakdown in water. J. Opt. Soc. Am. B 8:337–345 Sattmann R, Monch I, Krause H, Noll R, Couris S, Hatziapostolou A, Mavromanolakis A

    Google Scholar 

  • Fotakis C, Larrauri E, Miguel R (1998) Laser-induced breakdown spectroscopy for polymer identification. Appl. Spectrosc. 52: 456–461

    Google Scholar 

  • Singh JP, Yueh FY, Zhang HS, Cook RL (1997) Study of laser induced breakdown spectroscopy as a process monitor and control tool for hazardous waste remediation. Process Cont. Qual. 10: 247–258

    Google Scholar 

  • Song K, Lee YI, Sneddon J (1997) Applications of laser-induced breakdown spectrometry. Appl. Spectrosc. Rev. 32: 183–235

    Google Scholar 

  • St-Onge L, Sabsabi M, Cielo P (1998) Analysis of solids using laser-induced plasma spectroscopy in double-pulse mode. Spectrochim. Acta B 53: 407–415

    Google Scholar 

  • Stratis DN, Eland KL, Angel SM (2000) Dual-pulse LIBS using a pre-ablation spark for enhanced ablation and emission. Appl. Spectrosc. 54: 1270–1274

    Google Scholar 

  • Sturm V, Peter L, Noll R (2000) Steel analysis with laser-induced breakdown spectrometry in the vacuum ultraviolet. Appl. Spectrosc. 54: 1275–1278

    Google Scholar 

  • Su CF, Feng S, Singh JP, Yueh F-Y, Rigsby JT, III, Monts DL, Cook RL (2000) Glass composition measurement using laser induced breakdown spectrometry laser spectroscopy. Glass Technol. 41: 16–21

    Google Scholar 

  • Sun Q, Tran M, Smith BW, Winefordner JD (2000) Determination of Mn and Si in iron ore by laser-induced plasma spectroscopy. Anal. Chim Acta 413: 187–195

    Google Scholar 

  • Uhl A, Loebe K, Kreuchwig L (2001) Fast analysis of wood preservers using laser induced breakdown spectroscopy. Spectrochim. Acta B 56: 795–806

    Google Scholar 

  • Vadillo JM, Vadillo I, Carrasco F, Laserna JJ (1998) Spatial distribution profiles of magnesium and strontium in speleothems using laser-induced breakdown spectrometry. Fresenius J. Anal. Chem. 361: 119–123

    Google Scholar 

  • Vogel A, Busch S, Parlitz U (1996) Shock wave emission and cavitation bubble generation by picosecond and nanosecond optical breakdown in water. J. Acoust. Soc. Am. 100: 148–165

    Google Scholar 

  • Vogel A, Nahen K, Theisen D, Noack J (1996) Plasma formation in water by picosecond and nanosecond Nd:YAG laser pulses - part I: optical breakdown at threshold and superthreshold irradiance. IEEE J. Sel. Top. Quantum Electron. 2: 847–860

    Google Scholar 

  • Wallis FJ, Chadwick BL, Morrison RJS (2000) Analysis of lignite using laser-induced breakdown spectroscopy. Appl. Spectrosc. 54: 1231–1235

    Google Scholar 

  • Whitehouse AI, Young J, Botheroyd IM, Lawson S, Evans CP, Wright J (2001) Remote material analysis of nuclear power station steam generator tubes by laser-induced breakdown spectroscopy. Spectrochim. Acta B 56: 821–830

    Google Scholar 

  • Williamson CK, Daniel RG, McNesby KL, Miziolek AW (1998) Laser-induced breakdown spectroscopy for real-time detection of halon alternative agents. Anal. Chem. 70: 11861191

    Google Scholar 

  • Wisbrun R, Niessner R, Schröder H (1993) Laser-Induced breakdown spectrometry as a fast screening sensor for environmental analysis of trace amounts of heavy metals. Anal. Methods Instrum. 1: 17–22

    Google Scholar 

  • Xu L, Bulatov V, Gridin VV, Schechter I (1997) Absolute analysis of particulate materials by laser-induced breakdown spectroscopy. Anal. Chem. 69: 2103–2108

    Google Scholar 

  • Yamamoto KY, Cremers DA, Ferris MJ, Foster LE (1996) Detection of metals in the environment using a portable laser-induced breakdown spectroscopy instrument. Appl. Spectrosc. 50: 222–233

    Google Scholar 

  • Zuev VE, Zemlyanov AA, Kopytin YD, Kuzikovskii AV (1984) High-Power Laser Radiation in Atmospheric Aerosols. D. Reidel Publishing Company, Dordrecht

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Panne, U. (2004). Laser Induced Breakdown Spectroscopy (LIBS) in Environmental and Process Analysis. In: Hering, P., Lay, J.P., Stry, S. (eds) Laser in Environmental and Life Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-08255-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-08255-3_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07309-0

  • Online ISBN: 978-3-662-08255-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics