Skip to main content

Laser Analytics of Gas Samples in Life Science

  • Chapter
Laser in Environmental and Life Sciences

Abstract

Lasers have found a wide-spread application in life sciences, in particular in the field of biomedical research and clinical diagnostics. To date, these applications mainly involve laser-based instruments for imaging purposes or for therapeutic use, the latter exploiting the thermal or ablative effect of laser radiation interacting with biological tissue. However, modern laser systems get more and more useful also for analytical purposes in biomedical research. This contribution is intended to introduce the particular demands, advantages and problems of laser-based analytical techniques in life sciences, and to discuss in particular the medical and clinical aspects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aghdassi E, Allard JP (2000) Breath alkanes as a marker of oxidative stress in different clinical conditions [Review]. Free Radic.Biol.Med. 28: 880–886

    Article  Google Scholar 

  2. Alving K, Weitzberg E, Lundberg JM (1993) Increased amount of nitric oxide in exhaled air of asthmatics. Europ.Respir.J. 6: 1368–1370

    Google Scholar 

  3. American Thoracic Society (1999) Recommendations for standardized procedures for the online and offline measurement of exhaled lower respiratory nitric oxide and nasal nitric oxide in adults and children. Am.J.Respir.Crit.Care Med. 160: 2104–2117

    Google Scholar 

  4. Andreoni KA, Kazui M, Cameron DE, Nyhan D, Sehnert SS, Rohde CA, Bulkley GB, Risby TH (1999) Ethane: a marker of lipid peroxidation during cardiopulmonary bypass in humans. Free Radic.Biol.Med. 26: 439–445

    Article  Google Scholar 

  5. Arnal JF, Didier A, M’Rini C, Charlet JP, Serrano E, Besombes JP (1997) Nasal nitric oxide is increased in allergic rhinitis. Clin.Exp.Allergy 27: 358–362

    Article  Google Scholar 

  6. Arnal JF, Dinh-Xuan AT, Pueyo M, Darblade B, Rami J (1999) Endothelium-derived nitric oxide and vascular physiology and pathology [Review]. Cell.Mol.Life Sci. 55: 1078–1087

    Google Scholar 

  7. Bachem E, Dax A, Fink T, Weidenfeller A, Schneider M, Urban W (1993) Recent progress with the CO-overtone laser. Appl.Phys.B 57: 185–191

    Article  Google Scholar 

  8. Baraldi E, Scollo M, Zaramella C, Zanconato S, Zacchello F (2000) A simple flow-driven method for online measurement of exhaled NO starting at the age of 4 to 5 years. Am.J.Respir.Crit.Care Med. 162: 1828–1832

    Google Scholar 

  9. Barnes PJ (1993) Nitric oxide and airways. Europ.Respir.J. 6: 163–165

    Google Scholar 

  10. Bijnen FGC, Harren FJM, Hackstein JHP, Reuss J (1996) Intracavity CO laser photoacoustic trace gas detection; cyclic CH4, H2O and CO2 emission by cockroaches and scarab beetles. Appl Opt 35: 5357–5368

    Article  Google Scholar 

  11. Bilton D, Maddison J, Webb AK, Seabra L, Jones M, Braganza JM (1991) Cystic fibrosis, breath pentane, and lipid peroxidation. Lancet 337: 1420

    Google Scholar 

  12. Borland C, Cox Y, Higenbottam T (1993) Measurement of exhaled nitric oxide in man. Thorax 48: 1160–1162

    Article  Google Scholar 

  13. Braden B, Haisch M, Duan LP, Lembcke B, Caspary WF, Hering P (1994) Clinically feasible stable isotope technique at a reasonable price: analysis of 13CO2/12CO2abundance in breath samples with a new isotope selective nondispersive infrared spectrometer. Gastroenerol. 32: 612

    Google Scholar 

  14. Christen Y (2000) Oxidative stress and Alzheimer disease [Review]. Am.J.Clin.Nutr. 71: 621S - 6295

    Google Scholar 

  15. Chuchalin AG, Voznesenskiy N, Dulin K, Sakharova S, Soodaeva E, Stepanov EV (1999) Exhaled nitric oxide and exhaled carbon monoxide in pulmonary diseases. Am J Respir Crit Care Med 159: A410

    Google Scholar 

  16. Coburn RF (1970) Endogenous carbon monoxide production. N Engl J Med 282: 207–209

    Article  Google Scholar 

  17. Cooper DE, Martinelli RU, Carlisle CB, Riris H, Bour DB, Menna RJ (1993) Measurement of 12CO2:13CO2 ratios for medical diagnostics with 1.6.tm distributed-feedback semiconductor diode lasers. Appl Opt 32: 6727–6731

    Article  Google Scholar 

  18. Culotta E, Koshland DE, Jr. (1992) NO news is good news. Science 258: 1862

    Article  Google Scholar 

  19. Dahnke H, Kahl J, Schüler G, Boland W, Urban W (2000) On-line monitoring of biogenic

    Google Scholar 

  20. isoprene emissions using photacoustic spectroscopy. Appl.Phys.B 70:275–280

    Google Scholar 

  21. Dahnke H, Kleine D, Hering P, Mürtz M (2001) Real-time monitoring of ethane in human

    Google Scholar 

  22. breath using mid-infrared cavity leak-out spectroscopy. Appl.Phys.B 72:971–975

    Google Scholar 

  23. Davies S, Spanel P, Smith D (2001) A new ‘online’ method to measure increased exhaled isoprene in end-stage renal failure. Nephrol Dial Transplant 16: 836–839

    Article  Google Scholar 

  24. de Meer K, Roef MJ, Kulik W, Jakobs C (1999) In vivo research with stable isotopes in biochemistry, nutrition and clinical medicine: an overview. Isotop.Env.Health Stud. 35: 19–37

    Article  Google Scholar 

  25. Dillon WC, Hampl V, Shultz PJ, Rubins JB, Archer SL (1996) Origins of breath nitric oxide in humans. Chest 110: 930–938

    Article  Google Scholar 

  26. Dupont LJ, Demedts MG, Verleden GM (1999) Prospective evaluation of the accuracy of exhaled nitric oxide for the diagnosis of asthma. Am.J.Respir.Crit.Care Med. 159: A861

    Google Scholar 

  27. Ebeler SE, Clifford AJ, Shibamoto T (1997) Quantitative analysis by gas chromatography of volatile carbonyl compounds in expired air from mice and human. J Chromatogr B Biomed Sci Appl 702: 211–215

    Article  Google Scholar 

  28. Fink T, Büscher S, Gäbler R, Yu Q, Dax A, Urban W (1996) An improved CO2 laser intra- cavity photoacoustic spectrometer for trace analysis. Rev.Sci.Instrum. 67: 4000–4004

    Article  Google Scholar 

  29. Giubileo G, Fantoni R, de Dominicis L, Giorgi M, Pulvirenti R, SneisM (2001) A TDLAS system for the diagnosis of helicobacter pylori infection in humans. Laser Physics Russia 11: 154–157

    Google Scholar 

  30. Gustafson LE, Leone AM, Persson MGeal (1991) Endogenous nitric oxide is present in the exhaled air of rabbits, guinea pigs, and humans. Biochem.Biophys.Res.Commun. 181: 852–867

    Article  Google Scholar 

  31. Habib MP, Clements NC, Garewal HS (1995) Cigarette smoking and ethane exhalation in humans. Am.J.Respir.Crit.Care Med. 151: 1368–1372

    Google Scholar 

  32. Habib MP, Tank LJ, Lane LC, Garewal HS (1999) Effect of vitamin E on exhaled ethane in cigarette smokers. Chest 115: 684–690

    Article  Google Scholar 

  33. Haisch M, Hering P, Wendel U, Broesicke H, Schadewaldt P (1993) Determination of 13C-labelled CO2: A new application of non-dispersive infrared spectroscopy. Biological Chemistry Hoppe Seyler 374: 688

    Google Scholar 

  34. Haisch M, Hering P, Fabinski W, Fuß W (1994a) A sensitive isotope selective non-dispersive infrared spectrometer for 13CO2 and 12CO2 concentration measurement in breath samples. Isotopenpraxis Isotopes in environmental and health studies 30: 247

    Article  Google Scholar 

  35. Haisch M, Hering P, Schadewaldt P, Brösike H, Braden B, Koletzko S, Steffen C (1994b) Biomedical application of an isotope selective nondispersive infrared spectrometer for 13CO2 and 12CO2 concentration measurement in breath samples. Isotopenpraxis Isotopes in environmental and health studies 30: 253

    Article  Google Scholar 

  36. Haisch M, Hering P, Fabinski W, Zöchbauer M (1996) Isotopenselektive Konzentrations-

    Google Scholar 

  37. messungen an Atemgasenmit einem NDIR-Spektrometer. Technisches Messen 63:322 Harren FJM, Oomens J, Persijn S, Veltman RH, de-Vries HSM, Parker D (1998) Multi-

    Google Scholar 

  38. component trace gas analysis with a CO laser based photoacoustic detector; emission

    Google Scholar 

  39. of ethanol, acetaldehyde, ethane and ethylene from fruit. Proc.SPIE 3405:556–562 Harren FJM (2001) Personal Communication

    Google Scholar 

  40. Hart CM (1999) Nitric oxide in adult lung disease. Chest 115: 1407–1417

    Article  Google Scholar 

  41. Hyspler R, Crhova S, Gasparic J, Zadak Z, Cizkova M, Balasova V (2000) Determination of isoprene in human expired breath using solid-phase microextraction and gas chromatography-mass spectrometry. J.Chromatogr.B 739: 183–190

    Article  Google Scholar 

  42. Ignarro LJ, Cirino G, Casini A, Napoli C (1999) Nitric oxide as a signaling molecule in the vascular system: an overview [Review]. J.Cardiovasc.Pharmacol. 34: 879–886

    Article  Google Scholar 

  43. Kharitonov SA (1999) Exhaled nitric oxide and carbon monoxide in asthma. Europ. Respir. J. 9: 212–218

    Google Scholar 

  44. Kharitonov SA, Barnes PJ (2001) Exhaled markers of pulmonary disease. Am.J.Respir.Crit.Care Med. 163: 1693–1722

    Google Scholar 

  45. Laser Analytics of Gas Samples in Life Science

    Google Scholar 

  46. King CE, Toskes PP (1983) The use of breath tests in the study of malabsorption. C1in.Gastroent. 12: 591–610

    Google Scholar 

  47. Kleine D, Dahnke H, Urban W, Hering P, Mürtz M (2000) Real-time detection of 13CH4 in ambient air by use of mid-infrared cavity leak-out spectroscopy. Opt.Lett. 25: 16061608

    Google Scholar 

  48. Kneepkens CM, Lepage G, Roy CC (1994) The potential of the hydrocarbon breath test as a measure of lipid peroxidation. Free Radic.Biol.Med. 17: 127–160

    Article  Google Scholar 

  49. Knutson MD, Lim AK, Viteri FE (1999) A practical and reliable method for measuring

    Google Scholar 

  50. ethane and pentane in expired air from humans. Free Radic.Biol.Med. 27:560–571 Knutson MD, Handelman GJ, Viteri FE (2000) Methods for measuring ethane and pentane

    Google Scholar 

  51. in expired air from rats and humans. Free Radic.Biol.Med. 28:514–519

    Google Scholar 

  52. Koletzko S, Haisch M, Seeboth 1, Braden B, Hengels K, Koletzko B, Hering P (1995) Isotope-selective non-dispersive infrared spectrometry for detection of Helicobacter pylori infection with 13C-urea breath test. Lancet 345: 961–962

    Article  Google Scholar 

  53. Kosterev AA, Malinovsky AL, Tittel FK, Gmachl C, Capasso F, Sivco DL, Baillargeon JN, Hutchinson AL, Cho AY (2001) Cavity ringdown spectroscopic detection of nitric oxide with a continuous-wave quantum-cascade laser. Appl Opt 40: 5522–5529

    Article  Google Scholar 

  54. Kosterev AA, Tittel FK, Durante W, Allen M, Gmachl C, Capasso F, Sivco DL, Cho AY (2002) Detection of biogenic CO production above vascular cell cultures using a nearroom-temperature QC-DFB laser. Appl Phys B 74: 95–99

    Article  Google Scholar 

  55. Krumbiegel P (1991) Stable Isotope Pharmaceuticals for Clinical Research and Diagnosis. Gustav Fischer, Jena

    Google Scholar 

  56. Kühnemann F (1998) Photoacoustic trace gas detection using a cw single-frequency parametric oscillator. Appl Phys B 66: 741–745

    Article  Google Scholar 

  57. Lancaster DG, Richter D, Curl RF, Tittel FK (1998) Real-time measurements of trace gases using a compact difference frequency based sensor operating at 3.5 µm. Appl.Phys.B 67: 339

    Article  Google Scholar 

  58. Lee PS, Majkowski RF, Perry TA (1991) Tunable diode laser spectroscopy for isotope analysis-detection of isotopic carbon monoxide in exhaled breath. IEEE Trans Biomed Eng 38: 966–973

    Article  Google Scholar 

  59. Lee PS, Schreck RM, Hare BA, McGrath JJ (1994) Biomedical applications of tunable diode laser spectrometry: correlation between breath carbon monoxide and low level blood carboxyhemoglobin saturation. Ann Biomed Eng 22: 120–125

    Article  Google Scholar 

  60. Martis A, Büscher S, Kühnemann F, Urban W (1998) Simultaneous ethane and ethylene detection using a CO Overtone laser PA spectrometer: A new tool for stress/ damage studies. Instr.Sci.Technol. 26: 177–187

    Google Scholar 

  61. Menzel L, Kosterev AA, Curl RF, Tittel FK, Gmachl C, Capasso F, Sivco DL, Baillargeon JN, Huchinson AL, Cho AY, Urban W (2001) Spectroscopic detection of biological NO with a quantum cascade laser. Appl Phys B 72: 859–863

    Article  Google Scholar 

  62. Miller ER, Appel LJ, Jiang L, Risby TH (1997) Association between cigarette smoking and

    Google Scholar 

  63. lipid peroxidation in a controlled feeding study. Circulation 96:1097–1101

    Google Scholar 

  64. Moncada S, Palmer RM, Higgs EA (1991) Nitric oxide: physiology, pathophysiology, and

    Google Scholar 

  65. pharmacology [Review]. Pharmacol.Rev. 43:109–142

    Google Scholar 

  66. Morimoto Y, Durante W, Lancaster DG, Klattenhoff J, Tittel FK (2001) Real-time measurements of endogenous CO production from vascular cells using an ultrasensitive laser sensor. Am J Physiol Heart Circ Physiol 280: H483 - H488

    Google Scholar 

  67. Moskalenko K, Nadezhdinskii A, Adamovskaya IA (1996) Human breath trace gas content study by tunable diode laser spectroscopy technique. Infrared Phys Technol 37: 181192

    Google Scholar 

  68. Mürtz M, Frech B, Palm P, Lotze R, Urban W (1998) Tunable carbon monoxide overtone laser sideband system for precision spectroscopy from 2.6 to 4.1 µm. Opt.Lett. 23: 5860

    Article  Google Scholar 

  69. Mürtz P, Menzel L, Bloch W, Hess A, Michel O, Urban W (1999) LMR spectroscopy: a new sensitive method for on-line recording of nitric oxide in breath. J Appl Physiol 86: 1075–1080

    Google Scholar 

  70. Oomens J, Zuckermann H, Persijn S, Parker D, Harren FJM (1998) CO-laser-based photo-acoustic trace-gas detection: applications in postharvest physiology. Appl Phys B 67: 459–466

    Article  Google Scholar 

  71. Paldus BA, Harb CC, Spence TG, Zare RN, Gmachl C, Capasso F, Sivco DL, Baillargeon JN, Hutchinson AL, Cho AY (2000) Cavity Ring-down Spectroscopy using Mid-Infrared Quantum Cascade Lasers. Opt.Lett. 25: 668

    Article  Google Scholar 

  72. Paredi P, Loukides S, Ward S, Fantoni R, et al. (1998) Exhalation flow and pressure-controlled reservoir collection of exhaled nitric oxide for remote and delayed analysis. Thorax 53: 775–779

    Article  Google Scholar 

  73. Paredi P, Kharitonov SA, Leak D, Shah PL, Cramer D, Hodson ME, Barnes PJ (2000) Exhaled ethane is elevated in cystic fibrosis and correlates with carbon monoxide levels and airway obstruction. Am.J.Respir.Crit.Care Med. 161: 1247–1251

    Google Scholar 

  74. Phillips M (1992) Breath tests in medicine. Sci.Am.(Int.Ed.) July:52

    Google Scholar 

  75. Phillips M (1999) Breath test for detection of lung cancer. US Patent 5996586

    Google Scholar 

  76. Phillips M (2001) Breath methylated alkane contour: a new marker of oxidative stress and disease. US Patent 6254547

    Google Scholar 

  77. Pleil JD, Lindstrom AB (1995) Measurement of volatile organic compounds in exhaled breath as collected in evacuated electropolished canisters. J Chromatogr B Biomed Appl 665: 271–279

    Article  Google Scholar 

  78. Pryor WA, Godber SS (1991) Noninvasive measures of oxidative stress status in humans [Review]. Free Radic.Biol.Med. 10: 177–184

    Article  Google Scholar 

  79. Riely CA, Cohen G, Lieberman M (1974) Ethane evolution: a new index of lipid peroxidation. Science 183: 208–208

    Article  Google Scholar 

  80. Risby TH, Sehnert SS (1999) Clinical application of breath biomarkers of oxidative stress status [Review]. Free Radic.Biol.Med. 27: 1182–1192

    Article  Google Scholar 

  81. Risby TH, Jiang L, Stoll S, Ingram D, Spangler E, Heim, Cutler R, Roth GS, Rifkind JM (1999) Breath ethane as a marker of reactive oxygen species during manipulation of diet and oxygen tension in rats. J.Appl.Physiol. 86: 617–622

    Google Scholar 

  82. Risby TH, Sehnert SS, Jiang L, Burdick JF (2001) Volatile biomarkers for analysis of hepatic disorders. US Patent 6248078

    Google Scholar 

  83. Roller C, Namjou K, Jeffers J, Potter W, McCann PJ, Grego J (2002) Simultaneous NO and CO2 measurement in human breath with a single IV—VI mid-infrared laser. Opt.Lett. 27: 107–109

    Article  Google Scholar 

  84. Sauke TB, Becker JF, Torre-Bueno J (1997) Laser diode spectrometer for analyzing the ratio of isotopic species in a substance. US Patent 5640014

    Google Scholar 

  85. Sies H (1997) Oxidative stress: oxidants and antioxidants [Review]. Exp.Physiol. 82: 291–295

    Google Scholar 

  86. Silkoff PE, Stevens A, Bucher-Bartelson B, Martin RJ (1999) A method for the standardized offline collection of exhaled nitric oxide. Chest 116: 754–759

    Article  Google Scholar 

  87. Steffen C, Haisch M, Hering P (1993) The evaluation of drug metabolism capacity by 13C and 14C carbon dioxide exhalation data. Fundamental & Clinical Pharmacology 7: 381

    Google Scholar 

  88. Stepanov EV, Moskalenko KL (1993) Gas analysis of human exhalation by tunable diode laser spectroscopy. Opt Eng 32: 361–367

    Article  Google Scholar 

  89. Laser Analytics of Gas Samples in Life Science

    Google Scholar 

  90. Tanahashi T, Kodama T, Yamaoka Y, Sawai N, Tatsumi Y, Kashima K, Higashi Y, Sasaki Y (1998) Analysis of the 13C-urea breath test for detection of Helicobacter pylori infection based on the kinetics of delta-13CO2 using laser spectroscopy. J Gastroenterol Hepatol 13: 732–737

    Article  Google Scholar 

  91. Taucher J, Hansel A, Jordan A, Fall R, Futrell JH, Lindinger W (1997) Detection of isoprene in expired air from human subjects using proton-transfer-reaction mass spectrometry. Rapid Commun.Mass.Spectrosc. 11: 1230–1234

    Article  Google Scholar 

  92. Urban W (1995) Physics and spectroscopic applications of carbon monoxide lasers, a review. Infrared Phys.Technol. 36: 465–473

    Article  Google Scholar 

  93. Wetzel K, Fischer H (2001) 13C-breath tests in medical research and clinical diagnosis. Unpublished Report

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mürtz, M., Hering, P. (2004). Laser Analytics of Gas Samples in Life Science. In: Hering, P., Lay, J.P., Stry, S. (eds) Laser in Environmental and Life Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-08255-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-08255-3_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07309-0

  • Online ISBN: 978-3-662-08255-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics