Rapid Analysis of Complex Mixtures by Means of Resonant Laser Ionization Mass Spectrometry

  • Christian Weickhardt
  • Karen Tönnies


Unlike any other field of instrumental analysis, mass spectrometry is in a phase of highly dynamic development, in which new areas of applications and technical or methodical innovations stimulate one another. Its popularity arises from its universal applicability, its high sensitivity, the quickness of its measurements and their high information content. On the instrumental side, besides the continuous improvement of the conventional types of mass spectrometers, the development of novel ones on the basis of magnetic and electrodynamic ion traps (March and Todd 1995) has to be mentioned. However, the most important improvements in the field of mass spectrometry within the last decade are probably due to the development of new ionization techniques. These are, on the one hand side methods which allow the intact ionization of large, in particular biologically and medically relevant, molecules (e.g. Electrospray Ionization (Gaskell 1997) and Matrix Assisted Laser Desorption/Ionization (Karas et al. 1991) and on the other side techniques which involve a certain degree of selectivity in the ionization step. Selectivity is imperative for the analysis of complex mixtures and is usually added to a mass spectrometric measurement in form of chromatographic preseparation. However, chromatographic techniques eliminate one of the major advantages of mass spectrometry: the quickness of the measurement. Furthermore, they require a considerable effort for the sample preparation, which as far as time consumption is concerned in many cases exceeds that for the instrumental analysis step by far. Finally, sample preparation and clean-up are a major source of quantitative errors.


Laser Desorption Laser Shot Multiphoton Ionization Nanosecond Laser Pulse Technical Paper Series 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alikanov SG (1957) A new impulse technique for ion mass measurement. Soy Phys JETP 4: 452Google Scholar
  2. Becker CH, Gillen KT (1984) Surface analysis by nonresonant multiphoton ionization of desorbed or sputtered species. Anal Chem 56: 1671CrossRefGoogle Scholar
  3. Becker JS, Dietze H-J (1992) Laser ionization mass spectrometry in inorganic trace analysis. Fresenius J Anal Chem 344: 69CrossRefGoogle Scholar
  4. Berezhetskaya NK, Varanov GV, Delone GA, Delone NB, Piskova GK (1970) Effect of a strong optical-frequency electromagnetic field on the hydrogen molecule. Sov Phys JETP 31: 403Google Scholar
  5. Boesl U, Neusser HJ, Schlag EW (1982) Secondary excitation of ions in a multiphoton mass spectrometer. Chem Phys Lett 87: 1CrossRefGoogle Scholar
  6. Boesl U, Weickhardt C, Schmidt S, Nagel H, Schlag EW (1993) Calibration method for the quantitative analysis of gas mixtures by means of multiphoton ionization mass spectrometry. Rev Sci Instrum 64: 3482CrossRefGoogle Scholar
  7. Boesl U, Weickhardt C, Zimmermann R, Schmidt S, Nagel H (1993) Fast exhaust gas probe for multicomponent analysis: Scientific/techniqual principle. SAE Technical Papers Series, No. 960083, SAE, Warrendale, PACrossRefGoogle Scholar
  8. Boesl U, Nagel H, Weickhardt C, Frey R, Schlag EW, Meyers RA (eds) (1998) Vehicle exhaust emission; analysis by laser mass spectrometry. The Encyclopedia of Environmental Analysis and Remediation, John Wiley & Sons: 5001Google Scholar
  9. Boesl U (2000) Laser mass spectrometry for environmental and industrial chemical trace analysis. J Mass Spectrom 35: 289CrossRefGoogle Scholar
  10. California Air Resource Board (1991) Proposed Reactivity Adjustment Factors for Transitional Low-Emission Vehicles. Staff Report and Technical Support Document, State of California Air Resources Board, Sacramento, Calif, Sept 27Google Scholar
  11. Campbell IM (1977) Energy and the Atmosphere. John Wiley & Sons Ltd, Chichester, U.K.Google Scholar
  12. Chin SL (1971) Multiphoton ionization of molecules. Phys Rev A 4: 992CrossRefGoogle Scholar
  13. Clement RE, Koester CJ, Eiceman G (1993) Environmental Analysis. Anal Chem 65: 85R For a review see: Cotter RJ (ed) ( 1994 ) Time-of-flight mass spectrometry. American Chemical Society, WashingtonGoogle Scholar
  14. Demirev PA (1995) Particle-induced desorption in mass spectrometry.1. Mechanisms and processes. Mass Spectrom Rev 14: 279CrossRefGoogle Scholar
  15. Dornberger U, Welsch T (1995) Explosivstoffe in Altlasten der Rüstungsproduktion. Z Umweltchem Ökotox 7: 302CrossRefGoogle Scholar
  16. Frey R, Nagel H, Franzen J, Rikeit H-E (1995) Time-resolved measurement of individual aromatic hydrocarbons in automotive exhaust gas at transient engine operation. SAE Technical Papers Series No. 951053, Warrendale, PACrossRefGoogle Scholar
  17. Gaskell SJ (1997) Electrospray: principles and practice. J Mass Spectrom 32: 677 Göppert-Mayer M (1931) Über Elementarakte mit zwei Quantensprüngen. Ann Phys 401: 273Google Scholar
  18. Grotemeyer J, Schlag EW (1989) Biomolecules in the Gas Phase: Multiphoton Ionization-Mass Spectrometry. Acc Chem Res 22: 399Google Scholar
  19. Grun C, Heinicke R, Weickhardt C, Grotemeyer J (1999) The application of ultra-short light pulses for the analysis of quickly relaxing organic molecules by means of laser mass spectrometry. Int J Mass Spectrom 185/186/187: 307Google Scholar
  20. Harrison AG (1992) Chemical ionization mass spectrometry. CRC Press, Boca Raton Hessische Landesanstalt für Umwelt (1998) Abschlußbericht Methodenvergleich Rüstungsaltlasten. Umweltplanung. Arbeits-und Umweltschutz: 251Google Scholar
  21. Karas M, Bahr U, Gießmann U (1991) Matrix-assisted desorption ionization mass spectrometry. Mass Spectrom Rev 10: 335CrossRefGoogle Scholar
  22. Kayed A (1990) Abfallwirtschaft in Forschung und Praxis 39: 75Google Scholar
  23. Kühnel G (1991) Die Rüstungsaltlastenproblematik in der Bundesrepublik Deutschland. Müll und Abfall 3: 155Google Scholar
  24. For a recent review see: Ledingham KWD Singhal RP (1997) High intensity laser mass spectrometry - A review. Int J Mass Spectrom Ion Proc 163: 149Google Scholar
  25. Letokhov VS (1987) Laser Photoionization Spectroscopy. Academic Press, Orlando, FL Levy DH (1981) The Spectroscopy of very cold gases. Science 214: 263Google Scholar
  26. Lubman DM (1987) Optically selective molecular mass spectrometry. Anal Chem 59: 31A Lubman DM ( 1994 ) Lasers and Mass Spectrometry. Oxford University Press, New YorkGoogle Scholar
  27. Mamyrin BA, Karataev DV, Shmikk DV, Zagulin VA (1973) The mass reflectron, a new non-magnetic time-of-flight mass spectrometer with high resolution. Soy Phys JETP37: 45Google Scholar
  28. March RE, Todd JFJ (eds) (1995) Practical aspects of ion trap mass spectrometry. CRC Press, Boca RatonGoogle Scholar
  29. Meijer G, deVries MS, Hunziker HE, Wendt HR (1990) Laser desorption jet-cooling of organic molecules — cooling characteristics and detection sensitivity. Appl Phys B 51: 395; (1990) Laser desorption jet-cooling spectroscopy of para-amino benzoic acid monomer, dimer, and clusters. J Phys Chem 94: 4394CrossRefGoogle Scholar
  30. Mies B-M, Bauer H-J (1991) Rüstungsaltlasten in Nordrhein-Westfalen. Müll und Abfall 7: 442Google Scholar
  31. Miller JC (ed) (1994) Laser Ablation. Springer-Verlag, BerlinGoogle Scholar
  32. Miller JC, Haglund RF (eds) (1997) Laser Ablation and Desorption. Academic Press, Orlando, FLGoogle Scholar
  33. Opsal RB, Owens KG, Reilly JP (1985) Resolution in the linear time-of-flight mass spectrometer. Anal Chem 57: 1884CrossRefGoogle Scholar
  34. Oser H, Coggiola MJ, Faris GW, Young SE, Volquardsen B, Crosley DR (2001) Development of a jet-REMPI (resonantly enhanced multiphoton ionization) continuous monitor for environmental applications. Appl Optics 40: 859CrossRefGoogle Scholar
  35. Powis I, Baer T, Ng C-Y (1995) High resolution laser photoionization and photoelectron studies. John Wiley & Sons, ChichesterGoogle Scholar
  36. Rapsch H-J (1991) Rüstungsaltlasten in Niedersachsen. Müll und Abfall 4: 221Google Scholar
  37. Smalley RE, Wharton L, Levy DH (1977) Molecular Optical Spectroscopy with Supersonic Beams and Jets. Acc Chem Res 10: 139CrossRefGoogle Scholar
  38. Spyra W (1991) Untersuchungen von Rüstungsaltlasten. EF-Verlag für Energie und Umwelttechnik, BerlinGoogle Scholar
  39. Tang CL, Cheng LK (1995) Fundamentals of Optical Parametric Processes and Oscillators. In: Laser Science and Technology. Vol 20, Harwood Academic Pub, Newark, NJGoogle Scholar
  40. Tarradellas J, Bitton G, Rossel D (1997) Soil ecotoxicology. CRC Lewis, New York Tembreull R, Sin CH, Li P, Pang HM, Lubman DM (1985) Applicability of resonant two- photon ionization in supersonic beam mass spectrometry to halogenated aromatic hy- drocarbons. Anal Chem 57: 1186CrossRefGoogle Scholar
  41. Tönnies K, Schmid RP, Weickhardt C, Reif J, Grotemeyer J (2001) Multiphoton ionization of nitrotoluenes by means of ultrashort laser pulses. Int J Mass Spectrom 206: 245CrossRefGoogle Scholar
  42. Träger F (1989) Photoacoustic, photothermal and photochemical processes at surfaces and in thin films. In: Hess P (ed) Springer-Verlag, BerlinGoogle Scholar
  43. Umweltbundesamt (1998) UBA-Informationen zur Altlastenerfassung. Google Scholar
  44. Vernov GS, Delone NB (1965) JETP Lett 1: 66 (Atoms)Google Scholar
  45. Villinger J, Federer W, Dornauer A, Weissnicht A, Hönig M, Mayr T (1996) Dynamic Differentiated Hydrocarbon Monitoring in Direct Engine Exhaust: A Versatile Tool in Engine Development. SAE Technical Papers Series, No. 960063, SAE, Warrendale, PACrossRefGoogle Scholar
  46. Weickhardt C, Boesl U (1993) Time resolved trace analysis of exhaust gas by means of laser mass spectrometry. Ber Bunsenges Phys Chem 97: 1716CrossRefGoogle Scholar
  47. Weickhardt C, Boesl U, Schlag EW (1994) Laser mass spectrometry for time-resolved multicomponent analysis of exhaust gas. Anal Chem 66: 1062CrossRefGoogle Scholar
  48. Weickhardt C, Boesl U, Schlag EW (1994) Method and apparatus for calibrating strongly fluctuating measuring signals for quantitative analysis of gas mixtures by resonant laser mass spectrometry. German Patent DE 4,305,981, 1. SeptGoogle Scholar
  49. Weickhardt C, Zimmermann R, Boesl U, Schlag EW (1994) Laser mass spectrometry of the di-, tri-and tetrachlorbenzenes: Isomer-selective ionization and detection. Rapid Commun Mass Spectrom 8: 381Google Scholar
  50. Weickhardt C, Moritz F, Grotemeyer J (1996) Time-of-flight mass spectrometry: State-of- the-art in chemical analysis and molecular science. Mass Spectrom Rev 15: 139Google Scholar
  51. Weickhardt C, Moritz F, Grotemeyer J (1996) Multiphoton ionization mass spectrometry: principles and fields of application. Eur Mass Spectrom 2; 151CrossRefGoogle Scholar
  52. Weickhardt C, Grun C, Grotemeyer J (1998) Fundamentals and features of analytical laser mass spectrometry with ultrashort laser pulses. Eur Mass Spectrom 4: 239CrossRefGoogle Scholar
  53. Weinberg DS, Hsu JP (1983) J High Resolut Chromatogr Commun 6: 404CrossRefGoogle Scholar
  54. Wiley WC, McLaren IH (1950) Time-of-Flight Mass Spectrometer with Improved Resolution. Rev Sci Instrum 26: 1150CrossRefGoogle Scholar
  55. Wöstmann U, Zentgraf C (1992) Altlastensituation im Bereich eines militärischen Zwischenlagers für Sonderabfälle. Müll und Abfall 10: 719Google Scholar
  56. Yinon J, Zitrin S (1981) The analysis of explosives. John Wiley, New YorkGoogle Scholar
  57. Yinon J; Zitrin S (1993) Modern methods and applications in analysis of explosives. John Wiley, ChichesterGoogle Scholar
  58. Yinon J, Zitrin S (1996) Modern methods and applications in analysis of explosives. John Wiley, New YorkGoogle Scholar
  59. Zenobi R (1994) Advances in surface-analysis and mass-spectrometry using laser-desorption methods. Chimica 48: 64Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Christian Weickhardt
  • Karen Tönnies

There are no affiliations available

Personalised recommendations