Skip to main content
  • 306 Accesses

Abstract

The understanding of atmospheric processes has become an important scientific topic and economic factor: Weather forecasting influences wide areas of modern life; if certain industries are located in unfavorable sites, residential areas may suffer from industrial pollution. A comprehensive understanding of these processes requires theoretical models as well as extensive measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. VJ Abreu, JE Barnes, PB Hays: “Observations of winds with an incoherent lidar detector”, Appl. Opt. 31, 4509–4514 (1992)

    Article  Google Scholar 

  2. M Aldén, H Edner, S Svanberg: “Laser monitoring of atmospheric NO using ultraviolet differential absorption techniques”, Opt. Lett. 7, 543–545 (1982)

    Article  Google Scholar 

  3. A Ansmann, R Neuber, P Rairoux, U Wandinger (eds.): “Advances in Atmospheric Remote Sensing with Lidar”, Springer, New York, Heidelberg, Berlin (1997)

    Google Scholar 

  4. Arshinov, S. Bobrovnikov, I. Serikov, A. Ansmann, D. Althausen, I. Mattis, and U. Wandinger: “Spectrally Absolute Instrumental Approach to Isolate Pure Rotational Raman Lidar Returns from Nitrogen Molecules of the Atmosphere”,in Dabas, Loth, Pelon (eds.), Advances in Laser Remote Sensing, Selected Papers Presented at the 20th International Laser Radar Conference (ILRC), Vichy, France 10–14 July 2000. Edition del’Ecole Polytechnique, 121–124, (2001)

    Google Scholar 

  5. J.W. Bilbro: “Atmospheric laser Doppler velocimetry: an overview”, Opt. Eng. 19, 533–542 (1980)

    Article  Google Scholar 

  6. J. Bösenberg: “Ground-based differential absorption lidar for water- vapor and temperature profiling: methodology”, Appl. Opt. 37, 3845–3860 (1998)

    Google Scholar 

  7. Chanin 1989) M.L. Chanin, A. Gamier, A. Hauchecorne, J. Porteneuve: “A Doppler lidar for measuring winds in the middle atmosphere”; Geophys. Res. Lett. 16, 1273–1276 (1989)

    Article  Google Scholar 

  8. H. Edner, K. Fredriksson, A. Sunesson, W. Wendt: “Monitoring C12 using a differential absorption lidar system”, Appl. Opt. 26, 3183–3185 (1987)

    Article  Google Scholar 

  9. H. Edner, G.W. Faris, A. Sunesson, S. Svanberg: “Atmospheric atomic mercury monitoring using differential absorption lidar techniques”, Appl. Opt. 28, 921–930 (1989)

    Article  Google Scholar 

  10. H. Edner, P. Ragnarson, S. Svanberg, E. Wallinder, R. Ferrara, R. Cioni, B. Raco, G. Taddeucci: “Total fluxes of sulfur dioxide from the Italian volcanoes Etna, Stromboli, and Vulcano measured by differential absorption lidar and passive differential absorption spectroscopy”, J. Geophys. Res. 99, 18827–18838 (1994)

    Article  Google Scholar 

  11. A. Fix and G. Ehret: “Injection Seeded Optical Parametric Oscillator System for Water Vapor DIAL Measurements”, in A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger (eds.): “Advances in Atmospheric Remote Sensing with Lidar”, Springer, New York, Heidelberg, Berlin (1997)

    Google Scholar 

  12. A.P. Force, D.K. Killinger, W.E. DeFeo, N. Menyuk: “Laser remote sensing of atmospheric ammonia using a CO2 lidar system”, Appl. Opt. 24, 2837–2841 (1985)

    Article  Google Scholar 

  13. K. Frederiksson, B. Galle, K. Nystrom, S. Svanberg: “Lidar System Applied in Atmospheric Pollution Monitoring”, Appl. Opt. 18, 2998–3003 (1979)

    Article  Google Scholar 

  14. T. Fuji, T. Fukuchi, N. Goto, K. Nemoto, N. Takeuchi: “Dual differential absorption lidar for the measurement of atmospheric SO2 of the order of parts in 109”, Appl. Opt. 40, 949–956 (2001)

    Article  Google Scholar 

  15. B. Galle, A. Sunesson, W. Wendt: “NO2-Mapping using laser radar techniques”, Atmosph. Environ. 22, 569–573 (1988)

    Article  Google Scholar 

  16. T.D. Gardiner, M.J.T. Milton, F. Molero, P.T. Woods: “Infrared DIAL Measurements with an Injection-Seeded OPO”, in A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger (eds.): “Advances in Atmospheric Remote Sensing with Lidar”, Springer, New York, Heidelberg, Berlin (1997)

    Google Scholar 

  17. Goldsmith 1998) J.E.M. Goldsmith, F.H. Blair, S.E. Bisson, D.D. Turner: “Turn-key Raman lidar for profiling atmospheric water vapor, clouds, and aerosols”, Appl. Opt. 37, 4979–4990 (1998)

    Article  Google Scholar 

  18. J. Harms, W. Lahmann, and C. Weitkamp: “Geometrical compression of li-dar return signal”, Appl. Opt. 17, 1131–1135 (1978)

    Article  Google Scholar 

  19. W.S. Heaps, J. Bums, J.A. French: “Lidar technique for remote measurement of temperature by use of vibrational-rotational Raman spectroscopy”, Appl. Opt. 36, 9402–9405 (1997)

    Article  Google Scholar 

  20. R. M. Huffaker, R. M. Hardesty: “Remotes sensing of atmospheric wind velocities using solid-state and CO2 coherent laser systems”, Proc. IEEE 84, 181–204 (1996)

    Article  Google Scholar 

  21. T.D. Irrgang, P.B. Hays, W.R. Skinner: „Two-channel direct-detection Doppler lidar employing a charge-coupled device as a detector“, Appl. Opt. 41, 1145–1155 (2002)

    Google Scholar 

  22. J.D. Klett: “Stable analytical inversion solution for processing lidar returns”, Appl. Opt. 20, 211–220 (1981)

    Article  Google Scholar 

  23. H.J. Kölsch, P. Rairoux, J.P. Wolf, L. Wöste: “Simultaneous NO and NO2 Dial Measurement using Bbo Crystals”, Appl. Opt. 28, 2052–2056 (1989)

    Google Scholar 

  24. H.J. Kölsch, P. Rairoux, J.P. Wolf, L. Wöste: “Comparative Study of Nitric Oxide Immission in the Cities of Lyon, Geneva, and Stuttgart Using a Mobile Differential Absorption LIDAR System”, Appl. Phys. B 54, 89–94 (1992)

    Article  Google Scholar 

  25. C.L. Korb, B.M. Gentry, C.Y. Weng: “Edge technique, theory and application to the lidar measurement of atmospheric wind”, Appl. Opt. 31, 4202–4213 (1992)

    Google Scholar 

  26. S. Lehmann and J. Bösenberg: “A Water Vapor DIAL System Using Diode Pumped Nd:YAG Lasers” in A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger (eds.): “Advances in Atmospheric Remote Sensing with Lidar”, Springer, New York, Heidelberg, Berlin (1997)

    Google Scholar 

  27. M.J. McGill, W.R. Skinner, T.D. Irrgang: “Analysis techniques for the recovery of winds and backscatter coefficients from a multiple-channel incoherent Doppler lidar”, Appl. Opt. 36, 1253–1268 (1997)

    Article  Google Scholar 

  28. (Measures 1984) R.M. Measures: “Laser Remote Sensing”, Wiley, New York (1984)

    Google Scholar 

  29. Menyuk 1982 ) N. Menyuk, D.K. Killinger, W.E. DeFeo: “Laser remote sensing of hydrazine, MMH, and UDMH using a differential-absorption CO2 lidar“, Appl. Opt. 21 2275-2286 (1982)

    Google Scholar 

  30. N. Menyuk, D.K. Killinger: “Atmospheric Remote Sensing of Water Vapor, HCl and CH4 Using a Continuously Tunable Co:MgF2 Laser”, Appl. Opt. 26, 3061–3065 (1987)

    Article  Google Scholar 

  31. M.J.T. Milton, P.T. Woods, B.W. Jolliffe, N.R.W. Swarm, T.J. McIlveen: “Measurements of Toluene and Other Hydrocarbons by Differential-Absorption LIDAR in the Near-Ultraviolet”, Appl. Phys. B 55, 41–45 (1992)

    Article  Google Scholar 

  32. A.S. Moore, Jr., K.E. Brown, W.M. Hall, J.C. Barnes, W.C. Edwards, L.B. Petway, A.D. Little, W.S. Luck, Jr., I.W. Jones, C.W. Antill, Jr., E.V. Browell, and S. Ismail: “Development of the Lidar Atmospheric Sensing Experiment (LASE) — An Advanced Airborne DIAL Instrument”, in A. Ansmann, R Neuber, P. Rairoux, U. Wandinger (eds.): “Advances in Atmospheric Remote Sensing with Lidar”, Springer, New York, Heidelberg, Berlin (1997)

    Google Scholar 

  33. D. Müller, U. Wandinger, D. Althausen, I. Mattis, A. Ansmann: “Retrieval of physical particle properties from lidar observations of extinction and backscatter from multiple wavelengths”, Appl. Phys. 37, 2260–2263 (1998)

    Google Scholar 

  34. D. Nedeljkovic, A. Hauchecorne, M.L. Chanin: “Rotational Raman li-dar to measure the atmospheric temperature from the ground to 30 km”, IEEE Trans. Geosci. Remote Sens. 31, 90–101 (1993)

    Article  Google Scholar 

  35. D. Renaut and D. Capitini: “Boundary-layer water vapor probing with a solar blind Raman lidar: validations, meteorological observations and prospects”, J. Atmos. Oceanic Technol. 5, 585–601 (1988)

    Article  Google Scholar 

  36. F.A. Theopold, J. Bösenberg: “Differential absorption lidar measurements of atmospheric temperature profiles: theory and experiment”, J. Atmos. Ocean. Tech. 10, 165–179 (1993)

    Article  Google Scholar 

  37. G. Vaughan, D.P. Wareing, S.J. Pepler, L. Thomas, V. Mitev: “Atmospheric temperature measurements by rotational Raman scattering”, Appl. Opt. 32, 2758–2764 (1993)

    Article  Google Scholar 

  38. VDI guideline 4210, part 1: “Remote sensing, Atmospheric measurements with Lidar, Measuring gaseous air pollution with DAS LIDAR“, Beuth, Berlin, 1999

    Google Scholar 

  39. VDI guideline 3786, part 14: ”2001–12 Environmental meteorology, groundbased remote sensing of the wind vector, Doppler wind lidar“, Beuth, Berlin, 2001

    Google Scholar 

  40. R. Velotta, B. Bartoli, R. Capobianco, L. Fiorani, and N. Spinelli: ”Analysis of the receiver response in lidar measurements“, Appl. Opt. 37 6999–7007 (1998)

    Google Scholar 

  41. P. Wahl, Observation and Characterization of laminated ozone structures in the polar stratosphere, in print, Ber. Polarforsch. Meeresforsch. (2002)

    Google Scholar 

  42. U. Wandinger and A. Ansmann: “Experimental determination of the li-dar overlap profile with Raman lidar”, Appl. Opt. 41, 511–514 (2002)

    Article  Google Scholar 

  43. D. Weidauer, H.D. Kambezidis, P. Rairoux, D. Melas, M. Ulbricht, Atmosph. Environ. 32, 2173–2183 (1998)

    Article  Google Scholar 

  44. Ch. Werner, F. Köpp, R.L. Schwiesow: “Remote measurements of boundary-layer wind profiles using a cw Doppler lidar”, J. Clim. and Appl. Meteor. 34, 2055–2067 (1995)

    Google Scholar 

  45. C. Werner, P.H. Flamant, O. Reitebuch, F. Köpp, J. Streicher, S. Rahm, E. Nagel, M. Klier, H. Herrmann, C. Loth, P. Delville, Ph. Drobinski, B. Romand, Ch. Boitel, D. Oh, M. Lopez, M. Meissonnier, D. Bruneau, A. Dabas: “Wind infrared Doppler lidar instrument”, Opt. Eng. 40, 115–125 (2001)

    Article  Google Scholar 

  46. D.M. Winkler, R.H. Couch, and M.P. McCormick: “An overview of LITE: NASA’s Lidar In-space Technology Experiment”, Proc. IEEE 84,2, 164–180 (1996)

    Google Scholar 

  47. V. Wulfmeyer: “Ground-based differential absorption lidar for water-vapor and temperature profiling: development and specifications of a high-performance laser transmitter”, Appl. Opt. 37, 3804–3824 (1998)

    Article  Google Scholar 

  48. V. Wulfmeyer, J. Bösenberg: “Ground-based differential absorption lidar for water-vapor profiling: assessment of accuracy, resolution, and meteorological applications”, Appl. Opt. 37, 3825–3844 (1998)

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ulbricht, M. (2004). Lidar: An Overview. In: Hering, P., Lay, J.P., Stry, S. (eds) Laser in Environmental and Life Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-08255-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-08255-3_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07309-0

  • Online ISBN: 978-3-662-08255-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics