Skip to main content

Abstract

Lantibiotics form a particular group within the antibiotic peptides and are distinguished by several features such as primary and spatial structure peculiarities, unprecedented peptide modification reactions, unique biosynthetic pathways and potent antibacterial activity.1 These properties have attracted much interest over the last decade from both basic researchers of various disciplines and applied sciences aiming at introducing such peptides into agro-food and biomedical industries. Indeed, nisin, the most prominent and best studied lantibiotic, has a long and well documented history as an effective and safe food preservative.2 The success of nisin induced enormous research efforts from dairy and food industries, and these efforts have in turn led to a wealth of information on the biosynthesis, molecular genetics and structure-function relationships of lantibiotics and related unmodified peptide bacteriocins.3 Although lantibiotics in many ways are unique peptides, they should not be regarded as a separate entity, but rather be discussed in context with antibiotic peptides in general.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sahl HG, Jack RW, Bierbaum G. Biosynthesis and biological activities of lantibiotics with unique post-translational modifications. Eur J Biochem 1995; 230: 827–853.

    Article  PubMed  CAS  Google Scholar 

  2. Hurst A. Nisin. In: Perlman D, Laskin AI, eds. Advances in Applied Microbiology, London: Academic Press, 1981; 27: 85–123.

    Google Scholar 

  3. Jack RW, Tagg JR, Ray B. Bacteriocins of Gram-positive bacteria. Microbiol Rev 1995; 59: 171–200.

    PubMed  CAS  Google Scholar 

  4. Boman HG, Hultmark D. Cell-free immunity in insects. Annu Rev Microbiol 1987; 41: 103–126.

    Article  PubMed  CAS  Google Scholar 

  5. Lehrer RI, Lichtenstein AK, Ganz T. Defensins-antimicrobial and cytotoxic peptides of mammalian cells. Annu Rev Immunol 1993; 11: 105–128.

    Article  PubMed  CAS  Google Scholar 

  6. Boman HG, Marsh J, Goode JA eds. Antimicrobial Peptides, Ciba Foundation Symposium 186, Chichester: John Wiley and Sons, 1994.

    Google Scholar 

  7. Boman HG. Peptide antibiotics and their role in innate immunity. Annu Rev Immunol 1995; 13: 61–92.

    Article  PubMed  CAS  Google Scholar 

  8. Kleinkauf H, von Döhren. Nonribosomal biosynthesis of peptide antibiotics. Eur J Biochem 1990; 192: 1–15.

    Article  PubMed  CAS  Google Scholar 

  9. Kleinkauf H, von Döhren. A nonribosomal system of peptide biosynthesis. Eur J Biochem 1996; 236: 335–351.

    Article  PubMed  CAS  Google Scholar 

  10. Katz E, Demain AL. The peptide antibiotics of Bacillus: chemistry, biogenesis, and possible functions. Bacteriol Rev 1977; 41: 449–474.

    PubMed  CAS  Google Scholar 

  11. Zuber P, Nakano MM, Marahiel MA. Peptide antibiotics. In: Sonenshein AL, Hoch JA, Losick R, eds. Bacillus subtilis and Other Gram-positive Bacteria. Washington: ASM, 1993: 897–916.

    Google Scholar 

  12. Jones GH, Hopwood DA. Molecular cloning and expression of the phenoxazinone synthase gene from Streptomyces antibioticus. J Biol Chem 1984; 259: 14151–14157.

    PubMed  CAS  Google Scholar 

  13. Kratzschmar J, Krause M, Marahiel MA. Gramicidin S biosynthesis operon containing the structural genes grsA and grsB has an open reading frame encoding a protein homologous to fatty acid thioesterases. J Bacteriol 1989; 171: 5422–5429.

    PubMed  CAS  Google Scholar 

  14. Mittenhuber G, Weckermann R, Marahiel MA. Gene cluster containing the genes for tyrocidine synthetase 1 and 2 from Bacillus brevis: evidence for an operon. J Bacteriol 1989; 171: 4881–4887.

    PubMed  CAS  Google Scholar 

  15. Turgay K, Krause M, Marahiel MA. Four homologous domains in the primary structure of GrsB are related to domains in a superfamily of adenylate-forming enzymes. Mol Microbiol 1992; 6: 529–546.

    Article  PubMed  CAS  Google Scholar 

  16. Lipmann F. Bacterial production of antibiotic polypeptides by thiol-linked synthesis on protein templates. Adv Microb Physiol 1980; 21: 227–260.

    Article  PubMed  CAS  Google Scholar 

  17. Finkelstein A, Andersen OS. The gramicidin A channel. A review of its permeability characteristics with special reference to the single-file aspect of transport. J Membr Biol 1981; 59: 155–171.

    Article  PubMed  CAS  Google Scholar 

  18. Langs DA. Three-dimensional structure at o.86 A of the uncomplexed form of the transmembrane ion channel peptide gramicidin A. Science 1988; 241: 188–191.

    Article  PubMed  CAS  Google Scholar 

  19. Urry DW, Trapane TL, Prasad KU. Is the gramicidin A transmembrane channel single-stranded or double-stranded helix? A simple unequivocal determination. Science 1983; 221: 1064–1067.

    Article  PubMed  CAS  Google Scholar 

  20. Fox RO, Richards FM. A voltage-gated ion channel model inferred from the crystal structure of alamethicin at 1.5-A resolution. Nature 1982; 300: 325–330.

    Article  PubMed  CAS  Google Scholar 

  21. Boheim G, Hanke W, Jung G. Alamethicin pore formation: voltage-dependent flip-flop of a-helix dipoles. Biophys Struct Mech 1983; 9: 181–191.

    Article  CAS  Google Scholar 

  22. Edmonds DT. The a-helix dipole in membranes: a new gating mechanism for ion channels. Eur Biophys J 1985; 13: 31–35.

    Article  PubMed  CAS  Google Scholar 

  23. Läuger P. Kinetic properties of ion carriers and channels. J Membr Biol 1980; 57: 163–178.

    Article  PubMed  Google Scholar 

  24. Boman HG. Chairman’s opening remarks. In: Boman HG, Marsh J, Goode JA, eds. Antimicrobial Peptides, Ciba Foundation Symposium 186, Chichester: John Wiley and Sons, 1994: 1–4.

    Google Scholar 

  25. Storici P, Scocchi M, Tossi A et al. Chemical synthesis and biological activity of a novel antibacterial peptide deduced from a pig myeloid cDNA. FEBS Lett 1994; 337: 303–307.

    Article  PubMed  CAS  Google Scholar 

  26. Zasloff M. Magainins, a class of antimicrobial peptides from Xenopus skin: isolation, characterization of two active forms, and partial cDNA sequence of a precursor. Proc Natl Acad Sci 1987; 84: 5449–5453.

    Article  PubMed  CAS  Google Scholar 

  27. Bevins CL, Zasloff M. Peptides from frog skin. Annu Rev Biochem 1990; 59: 395–414.

    Article  PubMed  CAS  Google Scholar 

  28. Jacob L, Zasloff M. Potential therapeutic applications of magainins and other antimicrobial agents of animal origin. In: Boman HG, Marsh J, Goode JA, eds. Antimicrobial Peptides, Ciba Foundation Symposium 186, Chichester: John Wiley and Sons, 1994: 197–216.

    Google Scholar 

  29. Hultmark D. Immune reactions in Drosophila and other insects-a model for innate immunity. Trends Genet 1993; 9: 178–183.

    Article  PubMed  CAS  Google Scholar 

  30. Boman HG, Agerberth B, Boman A. Mechanisms of action on Escherichia coli of cecropin-Pi and Pr-39: two antibacterial peptides from pig intestine. Infect Immun 1993; 61: 2978–2984.

    PubMed  CAS  Google Scholar 

  31. Ganz T. Biosynthesis of defensins and other antimicrobial peptides. In: Boman HG, Marsh J, Goode JA, eds. Antimicrobial Peptides, Ciba Foundation Symposium 186, Chichester: John Wiley and Sons, 1994: 62–71.

    Google Scholar 

  32. Hultmark D. Drosophila as a model system for antibacterial peptides. In: Boman HG, Marsh J, Goode JA eds. Antimicrobial Peptides, Ciba Foundation Symposium 186, Chichester: John Wiley and Sons, 1994107–120.

    Google Scholar 

  33. Hoffmann JA, Hetru C. Insect defensins: inducible antibacterial peptides. Immunol Today 1992; 13: 411–415.

    Article  PubMed  CAS  Google Scholar 

  34. Hoffmann J, Natori S, Janeway C eds. Phylogenetic Perspectives in Immunity: The Insect-Host Defense. Austin: RG Landes Co, 1994.

    Google Scholar 

  35. Selsted ME, Tang YQ, Morris WL et al. Purification, primary structures, and antimicrobial activities of b-defensins, a new family of antimicrobial peptides from bovine neutrophils. J Biol Chem 1993; 268: 6641–6648.

    PubMed  CAS  Google Scholar 

  36. Diamond G, Zasloff M, Eck H et al. Tracheal antimicrobial peptide, a cysteinerich peptide from mammalian tracheal mucosa: peptide isolation and cloning of cDNA. Proc Natl Acad Sci 1991; 88: 3952–3956.

    Article  PubMed  CAS  Google Scholar 

  37. Iwanaga S, Muta T, Shigenaga T et al. Structure-function relationships of tachyplesins and their analogues. In: Boman HG, Marsh J, Goode JA, eds. Antimicrobial Peptides, Ciba Foundation Symposium 186, Chichester: John Wiley and Sons, 1994: 160–174.

    Google Scholar 

  38. Cammue BPA, de Bolle MFC, Schoofs HME et al. Gene-encoded antimicrobial peptides from plants. In: Boman HG, Marsh J, Goode JA, eds. Antimicrobial Peptides, Ciba Foundation Symposium 186, Chichester: John Wiley and Sons, 1994: 91–101.

    Google Scholar 

  39. Redman DG, Fisher N. Purothionin analogues from barley flour. J Sci Food Agric 1969; 20: 427–432.

    Article  CAS  Google Scholar 

  40. Elsbach P. Bactericidal permeability-increasing protein in host defense against Gram-negative bacteria and endotoxin. In: Boman HG, Marsh J, Goode JA, eds. Antimicrobial Peptides, Ciba Foundation Symposium 186, Chichester: John Wiley and Sons, 1994: 176–187.

    Google Scholar 

  41. Pasteur L, Joubert JF. Charbon et septicémie. CR Soc Biol Paris 1877; 101–115.

    Google Scholar 

  42. Florey HW, Chain E, Heatley NG et al. Antibiotics. London: Oxford University Press, 1949.

    Google Scholar 

  43. Metchinokoff E. The Prolongation of Life. Optimistic Studies. London: William Heinemann, 1907.

    Google Scholar 

  44. Nissle A. Über die Grundlagen einer neuen ursächlichen Bekämpfung der pathologischen Darmflora. Dtsch Med Wochenschr 1916; 42: 1181–1184.

    Article  Google Scholar 

  45. Fredericq P. Colicins. Ann Rev Microbiol 1957; 11: 7–22.

    Article  CAS  Google Scholar 

  46. Jacob F, Lwoff A, Siminovitch A et al. Définition de quelques termes relatifs à la lysogénie. Ann Inst Pasteur (Paris) 1953; 84: 222–224.

    CAS  Google Scholar 

  47. Tagg JR, Dajani AS, Wannamaker LW. Bacteriocins of Gram-positive bacteria. Bacteriol Rev 1976; 40: 722–756.

    PubMed  CAS  Google Scholar 

  48. James R, Lazdunski C, Pattus F, eds. Bacteriocins, Microcins and Lantibiotics. Berlin: Springer Verlag 1992.

    Google Scholar 

  49. Elkins P, Bunker A, Cramer WA et al. A mechanism from toxin insertion into membranes is suggested by the crystal structure of the channel-forming domain of colicin E1. Structure 1997; 5: 443–458.

    Article  PubMed  CAS  Google Scholar 

  50. Gouaux E. The long and short of colicin action: the molecular basis for the biological activity of channel forming colicins. Structure 1997; 5: 313–317.

    Article  PubMed  CAS  Google Scholar 

  51. Jack RW, Tagg JR, Ray B. Bacteriocins of Gram-positive bacteria. Microbiol Rev 1995; 59: 171–200.

    PubMed  CAS  Google Scholar 

  52. Klaenhammer TR. Genetics of bacteriocins from lactic acid bacteria. FEMS Microbiol Rev 1993; 12: 39–86.

    PubMed  CAS  Google Scholar 

  53. Chikindas ML, Garcfa-Garcer6 MJ, Driessen AJM et al. Pediocin PA-1, a bacteriocin from Pediococcus acidilactici PAC1.o, forms hydrophilic pores in the membrane of target cells. Appl Environ Microbiol 1993; 59:3577–3584.

    Google Scholar 

  54. Chen Y, Shapira R, Eisenstein M et al. Functional characterization of pediocin PA-1 binding to liposomes in the absence of a protein receptor and its relationship to the predicted tertiary structure. Appl Environ Microbiol 1997; 63: 524–531.

    PubMed  CAS  Google Scholar 

  55. Henderson JT, Chopko AL, van Wassenaar PD. Purification and primary structure of pediocin PA-1 produced by Pediococcus acidilactici PACi.o. Arch Biochem Biophys 1992; 295: 5–12.

    Article  PubMed  CAS  Google Scholar 

  56. Marrugg JD, Gonzales CF, Kunka BS et al. Cloning, expression and nucleotide sequence of genes involved in the production of pediocin PA-1, a bacteriocin from Pediococcus acidilactici PACi.o. Appl Environ Microbiol 1992; 58: 2360–2367.

    Google Scholar 

  57. Tichaczek PS, Vogel RF, Hammes WP. Cloning and sequencing of sakP encoding sakacin P, the bacteriocin produced by Lactobacillus sake LTH673. Microbiology 1994; 140: 361–367.

    Article  PubMed  CAS  Google Scholar 

  58. Hastings JW, Sailer M, Johnson K et al. Characterization of leucocin A-UAL 187 and cloning of the bacteriocin gene from Leuconostoc gelidum. J Bacteriol 1991; 173: 7491–7500.

    PubMed  CAS  Google Scholar 

  59. Jack RW, Wan J, Gordon JG et al. Characterization of the chemical and antimicrobial properties of piscicolin 126, a novel bacteriocin produced by Carnobacterium piscicola JG 126. Appl Environ Microbiol 1996; 62: 2897–2903.

    PubMed  CAS  Google Scholar 

  60. Venema K, Kok J, Marrugg JD et al. Functional analysis of the pediocin operon of Pediociccus acidilactici PACi.o: PedB is the immunity protein and PedD is the precursor processing enzyme. Mol Microbiol 1995; 17: 515–522.

    Article  PubMed  CAS  Google Scholar 

  61. Havarstein LS, Diep DB, Nes IF. A family of bacteriocin ABC transporters carry out proteolytic processing of their substrates concomitant with export. Mol Microbiol 1995; 16: 229–240.

    Article  PubMed  CAS  Google Scholar 

  62. van Belkum MJ, Hayema BJ, Jeeninga RE et al. Cloning, sequencing and expression in Escherichia coli of lcnB a third bacteriocin determinant from the lactococcal bacteriocin plasmid p9B4–6. Appl Environ Microbiol 1991; 58: 572–577.

    Google Scholar 

  63. van Belkum MJ, Hayema BJ, Geis A et al. Cloning of two bacteriocin genes from a lactococcal bacteriocin plasmid. Appl Environ Microbiol 1989; 55: 1187–1191.

    PubMed  Google Scholar 

  64. Venema K, Dost MH, Venema G et al. Mutational analysis and chemical modification of Cys24 of lactococcin B, a bacteriocin produced by Lactococcus lactis. Microbiology 1996; 142: 2825–2830.

    Article  PubMed  CAS  Google Scholar 

  65. Stoddard GW, Petzel JP, van Belkum MJ et al. Molecular analysis of the lactococcin A gene cluster from Lactococcus lactis subsp. cremoris biovar diacetylactis WM4. Appl Environ Microbiol 58: 1952–1961.

    Google Scholar 

  66. Hobo H, Nissen O, Nes IF. Lactococcin A, a new bacteriocin from Lactococcus lactis subsp. cremoris: isolation and characterization of the protein and its gene. J Bacteriol 1991; 173: 3879–3887.

    Google Scholar 

  67. van Belkum MJ, Kok J, Venema G et al. The bacteriocin lactococcin A specifically increases the permeability of lactococcal cytoplasmic membranes in a voltage-independent, protein-mediated manner. J Bacteriol 1991; 173: 7934–7941.

    PubMed  Google Scholar 

  68. Nissen-Meyer J, Havarstein LV, Holo H et al. Association of the lactococcin A immunity factor with the membrane: purification and characterisation of the immunity factor. J Gen Microbiol 1993; 139: 1503–1509.

    PubMed  CAS  Google Scholar 

  69. Venema K, Haverkort RE, Abee T et al. Mode of action of LciA, the lactococcin A immunity protein. Mol Microbiol 1994; 14: 521–532.

    Article  PubMed  CAS  Google Scholar 

  70. Nissen-Meyer J, Holo H, Havarstein LV et al. A novel lactococcal bacteriocin whose activity depends on the complementary action of two peptides. J Bacteriol 1992; 174: 5686–5692.

    PubMed  CAS  Google Scholar 

  71. Moll G, Ubbink-Kok T, Hildeng-Hauge H et al. Lactococcin G is a potassium ion-conducting, two-component bacteriocin. J Bacteriol 1996; 178: 600–605.

    PubMed  CAS  Google Scholar 

  72. Fremaux C, Ahn C, Klaenhammer T. Molecular analysis of the lactacin F operon. Appl Environ Microbiol 1993; 59: 3906–3915.

    PubMed  CAS  Google Scholar 

  73. Muriana P, Klaenhammer TR. Cloning, phentypic expression and DNA sequence of the gene for lactacin F, an antimicrobial peptide produced by Lactococcus spp. J Bacteriol 1991; 173: 1779–1788.

    PubMed  CAS  Google Scholar 

  74. Schnell N, Entian KD, Schneider U et al. Prepeptide sequence of epidermin a ribosomally synthesized antibiotic with four sulphide rings. Nature 1988; 333: 276–278.

    Article  PubMed  CAS  Google Scholar 

  75. Gross E, Morell JL. The structure of nisin. J Am Chem Soc 1971; 93: 4634–4635.

    Article  PubMed  CAS  Google Scholar 

  76. Gross E, Kiltz HH, Nebelin E. VI Die Struktur des Subtilin H-S Z Physiol Chem 1973; 354: 810–812.

    CAS  Google Scholar 

  77. Hurst A. Biosynthesis of the antibiotic nisin by whole Streptococcus lactis organisms. J Gen Microbiol 1966; 44: 209–220.

    PubMed  CAS  Google Scholar 

  78. Ingram LC. A ribosomal mechanism of synthesis for peptides related to nisin. Biochim Biophys Acta 1970; 224: 263–265.

    Article  PubMed  CAS  Google Scholar 

  79. Moreno F, San Milan JL, del Castillo I et al. Escherichia coli genes regulating the production of Mccb17 and Mccb7. In: James R, Lazdunski C, Pattus F, eds. Bacteriocins, Microcins and Lantibiotics. Berlin: Springer Verlag 1992; 3–13.

    Chapter  Google Scholar 

  80. Baquero F, Moreno F. The microcins. FEMS Microbiol Lett 1984; 23: 117–124.

    Article  CAS  Google Scholar 

  81. Kolter R, Moreno F. Genetics of ribosomally synthesized peptide antibiotics. Annu Rev Microbiol 1992; 46: 141–163.

    Article  PubMed  CAS  Google Scholar 

  82. de Lorenzo V, Pugsley AP. Microcin E492, a low-molecular weight peptide antibiotic which causes depolarization of the Escherichia coli cytoplasmic membrane. Antimicrob Agents Chemother 1985; 27: 666–669.

    Article  PubMed  Google Scholar 

  83. Yang CC, Konisky J. Colicin V-treated Escherichia coli does not generate membrane potential. J Bacteriol 1984; 158: 757–759.

    PubMed  CAS  Google Scholar 

  84. Havarstein LS, Holo H, Nes IF. The leader peptide of colicin V shares consensus sequences with leader peptides that are common among peptide bacteriocins produced by Gram-positive bacteria. Microbiology 1994; 140: 2383–2389.

    Article  PubMed  CAS  Google Scholar 

  85. Jung G. Lantibiotics-ribosomally synthesized biologically active polypeptides containing sulphide rings and a,b-didehydroamino acids. Angew Chem Intl Ed Engl 1991; 30: 1051–1068.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jack, R.W., Bierbaum, G., Sahl, HG. (1998). Antimicrobial Peptides. In: Lantibiotics and Related Peptides. Biotechnology intelligence unit. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-08239-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-08239-3_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-08241-6

  • Online ISBN: 978-3-662-08239-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics