Advertisement

Liquordiagnostik

  • H. Reiber

Zusammenfassung

Die zytologische, chemische, bakteriologische und immunologische Analyse der Zerebrospinalflüssig-keit, kurz Liquor, ist ein essentieller Bestandteil der neurologischen Diagnostik. Neben dem Nachweis oder Ausschluß eines entzündlichen erreger- oder autoimmunologisch bedingten Prozesses liefert die Liquoruntersuchung wichtige Hinweise auf neoplastische Erkrankungen der Meningen und des ZNS sowie auf die CT-negative Subarachnoidalblutung. Die Wahl und Dosierung der speziellen Therapeutika bei entzündlichen oder neoplastischen neurologischen Erkrankungen ist in hohem Maße abhängig vom Liquorbefund.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

Zitierte Literatur

  1. Andersson M, Alvarez-Cermeno J, Bernardi G et al. (1994) Cerebrospinal fluid in the diagnosis of multiple sclerosis: A consensus report. J Neurol Neurosurg Psychiatry 57:897–902PubMedCrossRefGoogle Scholar
  2. Bradbury MWB (1993) Anatomy and physiology of cerebrospinal fluid. In: Schurr PH, Polkey CE (eds) Hydrocephalus. Oxford University Press, OxfordGoogle Scholar
  3. Burkhardt D, Schipper HI, Kaboth U, Felgenhauer K (1992) IgA producing primary intracerebral lymphoma. J Neurol Neurosurg Psychiatry 55:623 – 625PubMedCrossRefGoogle Scholar
  4. Christen HJ, Hanefeld F, Eiffert H, Thomssen R (1993) Epidemiology and clinical manifestation of Lyme borreliosis in childhood. Acta Paediatr Supp 386:1 – 76CrossRefGoogle Scholar
  5. Cinque P, Cleator GM, Weber T, Monteyne P, Sindic CJ, Van Coon AM (1996) The role of laboratory investigation in the diagnosis and management of patients with suspected herpes simplex encephalitis: a consensus report. J Neurol Neurosurg Psychiatry 61:339 – 345PubMedCrossRefGoogle Scholar
  6. Cinque P, Scarpellini P, Vago L et al. (1997) Diagnosis of central nervous system complications in HIV-infected patients: cerebrospinal fluid analysis by the polymerase chain reaction. AIDS 11:1–17PubMedCrossRefGoogle Scholar
  7. Conrad AJ, Chiang EY, Andeen LE et al. (1994) Quantitation of intrathecal measles virus IgG antibody synthesis rate: Subacute sclerosing panencephalitis and multiple sclerosis. J Neuroimmunol 54:99 – 108PubMedCrossRefGoogle Scholar
  8. Davson H, Segal MB (1996) Physiology of the CSF and blood-brain barriers. CRC, Boca RatonGoogle Scholar
  9. Denburg JA (1996) Neuronal antibodies. In: Peter JB, Shoenfeld Y (eds) Autoantibodies. Elsevier, Amsterdam, pp 546–550CrossRefGoogle Scholar
  10. Ekstedt J (1978) CSF hydrodynamic studies in man. 2. Normal hydrodynamic variables related to CSF pressure and flow. J Neurol Neurosurg Psychiatry 41:345 – 353PubMedCrossRefGoogle Scholar
  11. Felgenhauer K (1992) Liquordiagnostik. In: Thomas L (Hrsg) Labor und Diagnose, 4. Aufl. Med Verl Ges, Marburg, S 1715–1740Google Scholar
  12. Felgenhauer K (1995) Spezielle Pathobiochemie des Liquor-kompartiments. In: Greiling H, Gressner AM (Hrsg) Lehrbuch der klinischen Chemie und Pathobiochemie, 3. Aufl. Schattauer, Stuttgart, S 1065–1085Google Scholar
  13. Felgenhauer K, Reiber H (1992) The diagnostic relevance of antibody specificity indices in multiple sclerosis and herpes virus induced diseases of the nervous system. Clin Invest 70:28–37CrossRefGoogle Scholar
  14. Reiber H (1995 b) Biophysics of protein diffusion from blood into CSF: The modulation by CSF flow rate. In: Greenwood J, Begley D, Segal M (eds) New concepts of a blood-brain barrier. Plenum, London, pp 219–227Google Scholar
  15. Reiber H (1995 c) Die diagnostische Bedeutung neuroimmun-ologischer Reaktionsmuster im Liquor cerebrospinalis. Lab Med 19:444–462Google Scholar
  16. Reiber H (1996) Evaluation of blood-CSF barrier function and quantification of the humoral immune response within the CNS. In: Thompson EJ, Trojano M, Livrea P (eds) Cerebrospinal fluid analysis in multiple sclerosis. Springer, Mailand, pp 51–72CrossRefGoogle Scholar
  17. Reiber H (1997) CSF flow — Its influence on CSF concentrations of brain-derived and blood-derived proteins. In: Teelken A, Korf J (eds) Neurochemistry. Plenum, New York, pp 423–432Google Scholar
  18. Reiber H, Felgenhauer K (1987) Protein transfer at the blood cerebrospinal fluid barrier and the quantitation of the humoral immune response within the central nervous system. Clin Chim Acta 163:319–328PubMedCrossRefGoogle Scholar
  19. Reiber H, Lange P (1991) Quantification of virus-specific antibodies in cerebrospinal fluid and serum: Sensitive and specific detection of antibody synthesis in brain. Clin Chem 37:1153–1160PubMedGoogle Scholar
  20. Reiber H, Thiele P (1983) Species-dependent variables in blood cerebrospinal fluid function for proteins. J Clin Chem Clin Biochem 21:199–202PubMedGoogle Scholar
  21. Reiber H, Ruff M, Uhr M (1993) Ascorbate concentration in human cerebrospinal fluid (CSF) and serum. Intrathecal accumulation and CSF flow rate Clin Chim Acta 217: 163–173PubMedCrossRefGoogle Scholar
  22. Reiber H, Ungefehr St, Jacobi C (1997) The intrathecal, polys-pecific and oligoclonal immune response in multiple sclerosis. Multiple Sclerosis, submittedGoogle Scholar
  23. Reiber H, Sindic C, Thompson EJ (1999) Cerebrospinal fluid clinical neurochemistry of neurological diseases. Springer, Berlin Heidelberg New York TokyoGoogle Scholar
  24. Rieckmann P, Weber T, Felgenhauer K (1990) Class differentiation of immunoglobulin-containing cerebrospinal fluid cells in inflammatory diseases of the central nervous system. Klin Wochenschr 68:12 – 17PubMedCrossRefGoogle Scholar
  25. Rieckmann P, Martin S, Weichselbaum I et al. (1994) Serial analysis of circulating adhesion molecules and TNF receptor in serum from patients with multiple sclerosis. Neurology 44:2367–2372PubMedCrossRefGoogle Scholar
  26. Saito Y, Wright EM (1984) Regulation of bicarbonate transport across the brush border membrane of the bull-frog choroid plexus. J Physiol 350:327 – 342PubMedGoogle Scholar
  27. Schaarschmidt H, Prange H, Reiber H (1994) Neuron-specific enolase concentrations in blood as a prognostic parameter in cerebrovascular diseases. Stroke 24:558 – 565CrossRefGoogle Scholar
  28. Schmidt RM (1978) Atlas der Liquorzytologie. Barth, LeipzigGoogle Scholar
  29. Schmidt RM (1987) Der Liquor cerebrospinalis. Untersuchungsmethoden und Diagnostik, 2. Aufl, Bde I und IL Fischer, StuttgartGoogle Scholar
  30. Shoji H, Honda Y, Murai I, Sato Y, Oizumik K, Hondo R (1992) Detection of VZV-DNA by polymerase chain reaction in CSF of patients with herpes zoster meningitis. J Neurol 239:69 – 70PubMedCrossRefGoogle Scholar
  31. Sindic CJM, Monteyne PH, Laterre EC (1994) The intrathecal synthesis of virus-specific oligoclonal IgG in multiple sclerosis. J Neuroimmunol 54:75 – 80PubMedCrossRefGoogle Scholar
  32. Terryberry JW, Shoenfeld Y, Gilburd B et al. (1995) Myelin- and microbe-specific antibodies in Guillain-Barré Syndrome. J Clin Lab Anal 9(5):308–319PubMedCrossRefGoogle Scholar
  33. Thompson EJ (1988) The CSF proteins: A biochemical approach. Elsevier, AmsterdamGoogle Scholar
  34. Thompson EJ, Trojano M, Livrea P (1996) Cerebrospinal fluid analysis in multiple sclerosis. Springer, MailandCrossRefGoogle Scholar
  35. Trendelenburg C (1994) Labormedizinische Spezialbefundung und ärztliche Verantwortung. Interpretation of special findings in laboratory medicine and medical responsibility. Lab Med 18:545–551Google Scholar
  36. Tumani H, NöTker G, Reiber H (1995) Relevance of cerebrospinal fluid parameters for early diagnosis in neurobor-reliosis. Neurology 45:1663 – 1670PubMedCrossRefGoogle Scholar
  37. Vandvic B, Norrby E (1973) Oligoclonal IgG antibody response in the CNS to different measles virus antigens in subacute sclerosing panencephalitis. Proc Natl Acad Sei 70:1060 – 1063CrossRefGoogle Scholar
  38. Vandvic B, Norrby E, Nordal HJ (1979) Optic neuritis: local synthesis in the CNS of oligoclonal antibodies to measles, mumps, rubella and herpes simplex viruses. Acta Neurol Scand 60:204–213CrossRefGoogle Scholar
  39. Vandvic B, Nilsen RE, Vardal F, Norrby E (1982) Mumps meningitis: specific and non-specific antibody responses in the CNS. Acta Neurol Scand 65:468 – 487CrossRefGoogle Scholar
  40. Varela F J, Coutinho A (1991) Second generation immune networks. Immunol Today 12:159–166PubMedGoogle Scholar
  41. Weber T, Jürgens S, Liier W (1987) Cerebrospinal fluid immunoglobulins and virus-specific antibodies in disorders affecting the facial nerve. J Neurol 234:308–314PubMedCrossRefGoogle Scholar
  42. Weber T, Frye S, Bodemer M et al. (1996) Clinical implications of nucleic acid amplification methods for the diagnosis of viral infections of the nervous system. J Neuro Virol 2:175–190Google Scholar
  43. Wood JH (1980,1983) Neurobiology of cerebrospinal fluid, vols 1 and 2. Plenum, New YorkCrossRefGoogle Scholar
  44. Zerr I, Bodemer M, Racker S et al. (1995) Cerebrospinal fluid concentration of neuron-specific enolase in diagnosis of Creutzfeldt-Jakob disease. Lancet 345:1609–1610PubMedCrossRefGoogle Scholar
  45. Zerr I, Bodemer M, Otto M et al. (1996) Diagnosis of Creutzfeldt-Jakob disease by two-dimensional gel electrophoresis of cerebrospinal fluid. Lancet 348:846 – 849PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • H. Reiber

There are no affiliations available

Personalised recommendations