Advertisement

Entstehungsmechanismen des EEG

  • Stephan Zschocke

Zusammenfassung

Man muss unterscheiden zwischen den unmittelbaren Potentialquellen (Potentialgeneratoren) des EEG und den Strukturen, die den Rhythmus oder die verschiedenen Potentialmuster bedingen, mit denen die kortikalen Spannungsschwankungen registriert werden. Die eigentlichen Potentialgeneratoren liegen in der Hirnrinde. Auf dieser Ebene können die physiologischen Grundlagen als gut gesichert gelten. Die variablen Potentialmuster sind dagegen das Ergebnis einer Interaktion komplizierter Neuronenstrukturen in kortikalen und subkortikalen Bereichen des Hirns. In diesem Zusammenhang werden die nachfolgenden Ausführungen mitunter noch spekulativen Charakter haben müssen.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Adrian ED, Matthews BHC (1934) The interpretation of potential waves in the cortex. J Physiol 81: 440–471PubMedGoogle Scholar
  2. Andersen P (1966) Rhythmic 10/sec activity in the thalamus. In: Purpura DP, Yahr MD (eds) The thalamus. Columbia Univ Press, New York London, pp 143–151Google Scholar
  3. Andersen P, Andersson SA (1968) Physiological basis of the alpha rhythm. Appleton Century Crofts, New YorkGoogle Scholar
  4. Andersen P, Andersson SA (1974) Thalamic origin of cortical rhythmic activity. In: Handbook of Elec-troenceph Clin Neurophysiol, vol 2, part C. Elsevier, Amsterdam, pp C90-C118Google Scholar
  5. Barlow JS, Estrin Th (1971) Comparative phase characteristics of induced and intrinsic alpha activity. Electroencephalogr Clin Neurophysiol 30: 1–9PubMedCrossRefGoogle Scholar
  6. Basar E, Bullock TH (eds) (1992) Induced rhythms of the brain. Birkhauser, Boston Basel BerlinGoogle Scholar
  7. Berger H (1929) Uber das Elektrenkephalogramm des Menschen. Arch Psychiat Nervenkrankh 87: 527–570CrossRefGoogle Scholar
  8. Berger H (1938) Das Elektrenkephalogramm des Menschen. Nova Acta Leopoldina (Halle) 6: 173–309Google Scholar
  9. Brazier MAB (1948) Physiological mechanisms underlying the electrical activity of the brain. J Neurol Neurosurg Psychiatry 11: 118–133PubMedCrossRefGoogle Scholar
  10. Brazier MAB, Petsche H (eds) (1978) Architectonics of the cerebral cortex. Raven, New YorkGoogle Scholar
  11. Brodal A (1981) Neurological anatomy — in relation to clinical medicine, 3rd edn. Oxford Univ Press, New York OxfordGoogle Scholar
  12. Brooks C McC, Eccles JC (1947) Electrical investigation of the monosynaptic pathway through the spinal cord. J Neurophysiol 10: 251–274PubMedGoogle Scholar
  13. Brown BB, Klug JW (eds) (1974) The alpha syllabus. A handbook of human EEG alpha activity. Thomas, Springfield, 111Google Scholar
  14. Buzsaki G, Bickford RG, Ponomareff G, Thai LJ, Mandel R, Gage FH (1988) Nucleus basalis and the thalamic control of neocortical activity in the freely moving rat. J Neurosci 8: 4007–4026PubMedGoogle Scholar
  15. Callaway E (1962) Factors influencing the relationship between alpha activity and visual reaction time. Electroencephalogr Clin Neurophysiol 14: 674–682PubMedCrossRefGoogle Scholar
  16. Caspers H (1961) Die Entstehungsmechanismen des EEG. In: Janzen R (Hrsg) Klinische Elektroenzepha-lographie. Springer, Berlin Gottingen Heidelberg, S4–26Google Scholar
  17. Caspers H, Speckmann E-J (1970) Postsynaptische Potentiate einzelner Neurone und ihre Beziehungen zum EEG. Z EEG-EMG 1: 55–65Google Scholar
  18. Caspers H, Speckmann E-J (1974) Cortical DC shifts associated with changes of gas tensions in blood and tissue. In: Handbook of Electroenceph Clin Neurophysiol, vol 10, part A. Elsevier, Amsterdam, pp A10-A65Google Scholar
  19. Caspers H, Speckmann E-J, Lehmenkuhler A (1980) Electrogenesis of cortical DC potentials. In: Kornhuber HH, Deecke J (eds) Motivation, motor and sensory processes of the brain: Electrical potentials, behavior and clinical use. Progress in Brain Research, vol 54. Elsevier, New York, pp 3–15Google Scholar
  20. Cohen MW (1974) Glial potentials and their contribution to extracellular recordings. In: Handbook of Electroenceph Clin Neurophysiol, vol 2, part B. Elsevier, Amsterdam, pp B43-B60Google Scholar
  21. Creutzfeldt OD (1983) Cortex cerebri. Springer, Berlin Heidelberg New YorkCrossRefGoogle Scholar
  22. Creutzfeldt OD, Houchin J (1974) Neuronal basis of EEG-waves. In: Handbook of Electroenceph Clin Neurophysiol, vol 2, part C. Elsevier, Amsterdam, pp C5-C55Google Scholar
  23. Creutzfeldt OD, Jung R (1961) Neuronal discharge in the cat’s motor cortex during sleep and arousal. In: Wolstenholme GEW, O’Connor M (eds) The nature of sleep. Churchill, London, pp 131–170Google Scholar
  24. Creutzfeldt OD, Lux HD, Watanabe S (1966) Relations between EEG-phenomena and potentials of single cortical cells. I. Evoked potentials. Electroencephalogr Clin Neurophysiol 20: 1–18PubMedCrossRefGoogle Scholar
  25. Creutzfeldt OD, Struck G (1962) Neurophysiologie und Morphologie der chronisch isolierten Cortexinsel der Katze. Arch Psychiat Nervenkrankh 203: 708–731CrossRefGoogle Scholar
  26. Creutzfeldt OD, Watanabe S, Lux HD (1966) Relations between EEG-phenomena and potentials of single cortical cells. II. Spontaneous and convulsoid activity. Electroencephalogr Clin Neurophysiol 20: 19–37PubMedCrossRefGoogle Scholar
  27. Dustman RE, Beck EC (1965) Phase of alpha brain waves, reaction time, and visually evoked potentials. Electroencephalogr Clin Neurophysiol 18: 433–440PubMedCrossRefGoogle Scholar
  28. Eccles JC (1964) The physiology of synapses. Springer, Berlin Gottingen HeidelbergCrossRefGoogle Scholar
  29. Firbas W, Gruber H, Mayr R (1988) Neuroanatomie. Maudrich, Wien Munchen BernGoogle Scholar
  30. Frost JD Jr (1968) EEG-intracellular potential relationships in isolated cerebral cortex. Electroencephalogr Clin Neurophysiol 24: 434–443PubMedCrossRefGoogle Scholar
  31. Gastaut H (1974) Vom Berger-Rhythmus zum Alpha-Kult und zur Alpha-Kultur. Z EEG-EMG 5: 189–199Google Scholar
  32. Giannitrapani D (1971) Scanning mechanisms and the EEG. Electroencephalogr Clin Neurophysiol 30: 139–146PubMedCrossRefGoogle Scholar
  33. Gorji A, Scheller D, Straub H, Tegtmeir F, Kohling R, Hohling JM, Tuxhorn I, Ebner A, Wolf P, Werner-Panneck H, Oppel F, Speckmann EI (2001) Spreading depression in human neocortical slices. Brain Res 906: 74–83PubMedCrossRefGoogle Scholar
  34. Hogan K, Fitzpatrick J (1987) The cerebral origin of the alpha rhythm. Electroencephalogr Clin Neurophysiol 69: 79–81Google Scholar
  35. Hubel DH, Wiesel TN (1968) Receptive fields and functional architecture of monkey striate cortex. J Physiol 195: 215–243PubMedGoogle Scholar
  36. Jones EG (1975) Some aspects of the organization of the thalamic reticular complex. J Comp Neurol 162: 285–308PubMedCrossRefGoogle Scholar
  37. lones EG (1985) The thalamus. Plenum, New YorkGoogle Scholar
  38. Joseph JP, Remond A, Rieger H, Lesevre N (1969) The alpha average: II. Quantitative study and the proposition of a theoretical model. Electroencephalogr Clin Neurophysiol 26: 350–360PubMedCrossRefGoogle Scholar
  39. Kahle W, Leonhardt H, Platzer W (Hrsg) (1979) Ta-schenatlas der Anatomie. Bd 3: Kahle W, Nerven-system und Sinnesorgane. Thieme, StuttgartGoogle Scholar
  40. Knowles WD (1992) Normal anatomy and neurophysiology of the hippocampal formation. J Clin Neurophysiol 9: 252–263PubMedGoogle Scholar
  41. Kuffler SW, Nicholls JG (1966) The physiology of neuroglial cells. Erg Physiol 57: 1–90PubMedCrossRefGoogle Scholar
  42. Kuffler SW, Nicholls JG, Orkand RK (1966) Physiological properties of glial cells in the central nervous system of amphibia. J Neurophysiol 29: 768–780PubMedGoogle Scholar
  43. Kuffler SW, Potter DD (1964) Glia in the leech central nervous system: Physiological properties and neu-ron-glia relationship. J Neurophysiol 27: 290–320PubMedGoogle Scholar
  44. Lehmenkuhler A (1990) Spreading depression-Reaktio-nen an der Hirnrinde: Storungen des extrazellularen Mikromilieus. Z EEG-EMG 21: 1–6Google Scholar
  45. Li C-L, lasper H (1953) Microelectrode studies of the electrical activity of the cerebral cortex in the cat. J. Physiol 121: 117–140PubMedGoogle Scholar
  46. Loewenstein WR (1981) Junctional intercellular communication: the cell-to-cell membrane channel. Physiol Rev 61: 829–913PubMedGoogle Scholar
  47. Lopes da Silva F (1999) Dynamics of EEG as signals of neuronal populations: models and theoretical considerations. In: Niedermeyer E, Lopes da Silva F, Electroencephalography, 4th edn. Williams & Wilkins, Baltimore, pp 76–92Google Scholar
  48. Magoun HW (1952) An ascending reticular activating system in the brain stem. Arch Neurol Psychiat 67: 145–154CrossRefGoogle Scholar
  49. Milstein V (1974) Alpha wave phase and alpha attenuation. Electroencephalogr Clin Neurophysiol 37: 167–172PubMedCrossRefGoogle Scholar
  50. Moruzzi G, Magoun HW (1949) Brain stem reticular formation and activation of the EEG. Electroencephalogr Clin Neurophysiol 1: 455–473PubMedGoogle Scholar
  51. Mountcastle VB (1958) Modality and topographic properties of single neurons in cat’s somatic sensory cortex. I Neurophysiol 20: 408–437Google Scholar
  52. Niedermeyer E (1996) Dipole theory and electroencephalography. Clin Electroencephalogr 27: 121–131PubMedGoogle Scholar
  53. Nieuwenhuys R, Voogd J, van Huijzen C (1991) Das Zentralnervensystem des Menschen, 2.Aufl. Springer, Berlin Heidelberg New York TokioGoogle Scholar
  54. Nunez PL (1981) Electric fields of the brain. Oxford Univ Press, New York OxfordGoogle Scholar
  55. Orkand RK (1969) Neuroglial-neuronal interactions. In: Jasper HH, Ward AA, Pope A (eds) Basic mechanisms of the epilepsies. Little Brown, BostonGoogle Scholar
  56. Oshima T (1983) Intracortical organization of arousal as a model of dynamic neuronal processes that may involve a set of neurons. In: Desmedt JE (ed) Motor control mechanisms in health and disease: Raven, New York, pp 287–302Google Scholar
  57. Petsche H (1989) Wie entsteht das EEG? EEG-Labor 11: 120–135Google Scholar
  58. Petsche H (1990 a) Epilepsie. In: Zwiener U, Ludin HT, Petsche H: Neuropathologie. Fischer, JenaGoogle Scholar
  59. Petsche H (1990 b) EEG und Denken. Z EEG-EMG 21: 207–218Google Scholar
  60. Pfurtscheller G, Arinabar A (1977) Event-related cortical desynchronization detected by power measurements of scalp EEG. Electroencephalogr Clin Neurophysiol 42: 817–826PubMedCrossRefGoogle Scholar
  61. Pfurtscheller G, Pfurtscheller B (1970) Korrelation zwi-schen α-Rhythmus und gemittelten kortikalen Reiz-antworten. Z EEG-EMG 1: 197–204Google Scholar
  62. Purpura DP, Yahr MD (eds) (1966) The thalamus. Columbia Univ Press, New York LondonGoogle Scholar
  63. Rall W (1962) Electrophysiology of a dendritic neuron model. Biophys J 2: 145–167PubMedCrossRefGoogle Scholar
  64. Ransom BR, Sontheimer H (1992) The neurophysiology of glial cells. J Clin Neurophysiol 9: 224–251PubMedCrossRefGoogle Scholar
  65. Rauber A, Kopsch F (1987) Anatomie des Menschen, Bd III: Leonhardt H, Tondury G, Zilles K (Hrsg) Nervensystem, Sinnesorgane. Thieme, Stuttgart New York, S 87Google Scholar
  66. Remond A, Lesevre N (1967) Variations in average visual potential as a function of the alpha rhythm phase (‘autostimulation’). Electroencephalogr Clin Neurophysiol [Suppl] 26: 42–52Google Scholar
  67. Riekkinen P, Buzsaki G, Riekkinen P Jr, Soininen H, Partanen J (1991) The cholinergic system and EEG slow waves. Electroencephalogr Clin Neurophysiol 78: 89–96PubMedCrossRefGoogle Scholar
  68. Saper CB (1987) Diffuse cortical projection systems: anatomical organization and role in cortical function. In: Handbook of Physiology, sect 1: The nervous system, vol 5, part 1, chap 6. Am Physiol Soc, Bethesda, Maryland, pp 169–210Google Scholar
  69. Scheibel AB (1981) The problem of selective attention: a possible structural substrate. In: Pompeiano O, Ajmone-Marsan C (eds) Brain mechanisms of perceptual awareness. Raven, New York, pp319–326Google Scholar
  70. Scheibel ME, Scheibel AB (1966 a) The organization of the nucleus reticularis thalami: a Golgi study. Brain Res 1: 43–62PubMedCrossRefGoogle Scholar
  71. Scheibel ME, Scheibel AB (1966b) Patterns of organization in specific and nonspecific thalamic fields. In: Purpura DP, Yahr MD (eds) The thalamus. Columbia Univ Press, New York London, pp 13–46Google Scholar
  72. Scheibel ME, Scheibel AB (1967) Structural organization of nonspecific thalami nuclei and their projection toward cortex. Brain Res 6: 60–94PubMedCrossRefGoogle Scholar
  73. Schlag J (1974) Reticular influences on thalamo-cortical activity. In: Handbook of Electroenceph Clin Neurophysiol, vol 2, part C. Elsevier, Amsterdam, ppC119-C134Google Scholar
  74. Simon O (1977) Das Elektroenzephalogramm. Urban & Schwarzenberg, Mlinchen Wien BaltimoreGoogle Scholar
  75. Sloper JJ (1972) Gap junctions between dendrites in the primate cortex. Brain Res 44: 641–646PubMedCrossRefGoogle Scholar
  76. Somjen GG (1975) Electrophysiology of neuroglia. Ann Rev Physiol 37: 163–190CrossRefGoogle Scholar
  77. Somjen GG (1993) Glial and neuronal generators of sustained potential shifts associated with electro-graphic seizures. In: Zschocke S, Speckmann E-J (eds) Basic mechanisms of the EEG. Birkhauser, Boston Basel Berlin, pp 97–108CrossRefGoogle Scholar
  78. Speckmann E-J (1981) Einfuhrung in die Neurophysio-logie. Wiss Buchges, DarmstadtGoogle Scholar
  79. Speckmann EJ (1999) Die Erregungsubertragung. In: Deetjen P, Speckmann EJ (Hrsg) Physiologie. Urban & Fischer, München, S 26–34Google Scholar
  80. Speckmann E-J, Caspers H (1974) The effect of O2- and CO2-tensions in the nervous tissue on neuronal activity and DC potentials. In: Handbook of Electroenceph Clin Neurophysiol, vol 2, part C. Elsevier, Amsterdam, pp C71-C89Google Scholar
  81. Speckmann E-J, Caspers H (eds) (1979) Origin of cerebral field potentials. Thieme, StuttgartGoogle Scholar
  82. Speckmann E-J, Caspers H, Janzen RWC (1972) Relations between cortical DC shifts and membrane potential changes of cortical neurons associated with seizure activity. In: Petsche H, Brazier MAB (eds) Synchronization of EEG activity in epilepsies. Springer, New York, pp 93–111CrossRefGoogle Scholar
  83. Speckmann E-J, Elger CE (1999) Introduction to the neurophysiological basis of the EEG and DC potentials. In: Niedermeyer E, Lopes da Silva F, Electroencephalography, 4th edn. Williams & Wilkins, Baltimore, pp 15–27Google Scholar
  84. Steriade M, Deschenes M (1984) The thalamus as a neuronal oscillator. Brain Res Rev 8: 1–63 (in Brain Res 320)CrossRefGoogle Scholar
  85. Steriade M (1993) Cellular substrates of brain rhythms. In: Niedermeyer E, Lopes da Silva F, Electroencephalography, 3rd edn. Williams & Wilkins, Baltimore, pp 27–62Google Scholar
  86. Steriade M, Dossi RC, Nunez A (1993) Intracellular studies of thalamic neurons generating sleep delta waves and fast (40 Hz) oscillations during arousal. In: Zschocke S, Speckmann E-J (eds) Basic mechanisms of the EEG. Birkhauser, Boston Basel Berlin, pp 129–144CrossRefGoogle Scholar
  87. Steriade M, Gloor P, Llinas RR, Lopes da Silva F, Mesulam M-M (1990) Basic mechanisms of the cerebral rhythmic activities (Report of IFCN Committee on Basic Mechanisms). Electroencephalogr Clin Neurophysiol 76: 481–508PubMedCrossRefGoogle Scholar
  88. Steriade M, Llinas R (1988) The functional states of the thalamus and the associated neuronal interplay. Physiol Rev 68: 649–742PubMedGoogle Scholar
  89. Steriade M, Pare D, Hu B, Deschenes M (1990) The visual thalamocortical system and its modulation by the brain stem core. In: Ottoson D (ed-in-chief) Progress in Sensory Physiology 10. Springer, Berlin Heidelberg New York TokyoGoogle Scholar
  90. Surwillo WW (1963) The relation of simple response time to brain-wave frequency and the effects of age. Electroencephalogr Clin Neurophysiol 15: 105–114PubMedCrossRefGoogle Scholar
  91. Szenthagothai J (1969) Architecture of the cerebral cortex. In: Jasper HH, Ward AA, Pope A (eds) Basic mechanisms of the epilepsies. Little Brown, Boston, pp 13–28Google Scholar
  92. Vogel F (1970) The genetic basis of the human electroencephalogram (EEG). Humangenetik 10: 91–114PubMedCrossRefGoogle Scholar
  93. Walden J (1990) Elementarprozesse der synaptischen Erregungsubertragung. EEG-Labor 12: 174–189Google Scholar
  94. Walden J, Speckmann E-J, Bingmann D, Straub H (1993) Transmitter systems in neo- and archicortical structures. In: Zschocke S, Speckmann E-J (eds) Basic mechanisms of the EEC Birkhauser, Boston Basel Berlin, pp 215–229CrossRefGoogle Scholar
  95. Walker AE (1938) The primate thalamus. Univ Chicago Press, Chicago London, 2nd impressum 1966Google Scholar
  96. Wolff JR (1976) The morphological organization of cortical neuroglia. In: Handbook of Electroenceph Clin Neurophysiol, vol 2, part A. Elsevier, Amsterdam, pp A26-A43Google Scholar
  97. Zschocke S (1991) Vom Neuron uber den elektrischen Dipol zum EEG: Die Entstehungsmechanismen des EEC I. Die Potentialquellen des EEC EEG-Labor 13: 43–57Google Scholar
  98. Zschocke S (1991) Vom Neuron iiber den elektrischen Dipol zum EEG: Die Entstehungsmechanismen des EEG. II. Das EEG als Ableitung der kortikalen Feld-potentiale. EEG-Labor 13: 87–102Google Scholar
  99. Zschocke S, Speckmann E-J (eds) (1993) Basic mechanisms of the EEC Birkhauser, Boston Basel BerlinGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Stephan Zschocke
    • 1
  1. 1.HalstenbekDeutschland

Personalised recommendations