Skip to main content

Klinische Methoden zur Untersuchung der Mikrozirkulation

  • Chapter
Klinische Angiologie
  • 156 Accesses

Zusammenfassung

Aus naheliegenden Gründen erfassen die meisten der am Patienten klinisch einsetzbaren nichtinvasiven Methoden die Mikrozirkulation der Haut. Bei der Interpretation der an der Kutis gewonnenen Meßwerte muß deren funktionell-anatomischer Aufbau berücksichtigt werden, da je nach der Lage des Meßvolumens mehr nutritive oder mehr thermoregulatorische Kompartimente erfaßt werden. Praktisch alle aktuellen Verfahren konzentrieren sich dabei auf die direkte oder indirekte Erfassung der Hautperfusion. Idealerweise sollte eine solche Methode

  • ∂ die nutritive Kapillarperfusion (Austauschstrecke)

  • ∂ zum Nachweis gestörter zeitlicher und örtlicher Regulationsmechanismen flächenhaft und zeitkontinuierlich aufzeichnen und anschließend

  • ∂ in einem Funktionsbild in physikalisch definierten Einheiten (z.B. absolute Perfusionsraten oder ihre zeitliche Variabilität) topographisch darstellen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 349.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

25.1

  • Baer HU, Baer-Suryadinata C, Segantini P, Bollinger A (1985) Kapillarschäden nach Erfrierungen an den Akren, beurteilt durch die Fluoreszenz-Videomikroskopie. Schweiz Med Wochenschr 115:479–483

    PubMed  CAS  Google Scholar 

  • Baer-Suryadinata C, Bollinger A (1985) Transcapillary diffusion of Na-fluorescein measured by a ‘large window technique’ in skin areas of the forefoot. Int J Microcirc: Clin Exp 4:217–228

    CAS  Google Scholar 

  • Bollinger A (1985) Contribution of dynamic microvascular studies to pathophysiology and diagnosis of Raynaud’s phenomenon. Adv Microcic 12:82–94

    Google Scholar 

  • Bollinger A, Fagrell B (1990) Clinical capillaroscopy—A guide to its use in clinical research and practice. Hogrefe & Huber, Toronto

    Google Scholar 

  • Bollinger A, Butti P, Barras JP et al. (1974) Red blood cell velocity in nailfold capillaries of mean measured by a television microscopy technique. Microvasc Res 7:61–72

    Article  PubMed  CAS  Google Scholar 

  • Bollinger A, Jäger K, Roten A et al. (1979) Diffusion, pericapillary distribution and clearance of Na-Fluorescein in the human nailfold. Pflügers Arch 382:137–143

    PubMed  CAS  Google Scholar 

  • Bollinger A, Jäger K, Sgier F, Seglias J (1981) Fluorescence microlymphography. Circulation 64:1195–1200

    Article  PubMed  CAS  Google Scholar 

  • Bollinger A, Franzeck UK, Jäger K (1983) Fluoreszenz-Videomikroskopie zur quantitativen Analyse dynamischer Phänomene in der menschlichen MikroZirkulation. In: Meßmer K, Hammersen F (Hrsg) Vasomotion und quantitative Kapillaroskopie. Karger, Basel, S 111

    Google Scholar 

  • Boss C, Schneuwly P, Mahler F (1987) Evaluation and clinical application of the flying spot method in clinical nailfold capillary TV-microscopy. Int. J Microcirc: Clin Exp 6:15–23

    CAS  Google Scholar 

  • Butti P, Fagrell B, Fronek A, Maglietta M (1982) The response of blood flow velocity in finger nailfold capillaries to contralateral cooling. Int J Microcirc: Clin Exp 1:19–27

    CAS  Google Scholar 

  • Carpentier P, Franco A (1981) La capillaroscopie périunguéale, Deltacom, Paris

    Google Scholar 

  • Carrier EB, Rehberg PB (1923) Capillary and venous pressure in man. Skand Arch Physiol 44:20–31

    Article  Google Scholar 

  • Danzer CS, Hooker DR (1920) Determination of the capillary blood pressure in man with the micro-capillary tonometer. Am J Physiol 52:136–167

    Google Scholar 

  • Eichna LW, Bordley J (1939) Capillary blood pressure in man. Comparison of direct and indirect methods of measurement. J Clin Invest 18:695–704

    Article  PubMed  CAS  Google Scholar 

  • Enzmann V, Ruprecht KW (1982) Zwischenfälle bei der Fluoreszenzangiographie der Retina. Symptomatik, Prophylaxe und Therapie. Klin Monatsbl Augenheilkd 181:235–239

    Article  PubMed  CAS  Google Scholar 

  • Fagrell B (1983) Capillary dynamics in man. Prog Appl Microcirc 3:119–130

    Google Scholar 

  • Fagrell B, Maglietta M, Östergren J (1980) Relative hematocrit in human skin capillaries and its relation to capillary blood flow velocity. Microvasc Res 20:327–335

    Article  PubMed  CAS  Google Scholar 

  • Fagrell B, Svedman P, Östergren J (1982) The influence of hydrostatic pressure and contralateral cooling on capillary blood cell velocity and transcutaneous oxygen in fingers. Int J Microcirc: Clin Exp 1:163–171

    CAS  Google Scholar 

  • Franzeck UK, Bollinger A, Huch R, Huch A (1984) Transcutaneous oxygen tension and capillary morphologic characteristics and density in patients with chronic venous incompetence. Circulation 70:806–811

    Article  PubMed  CAS  Google Scholar 

  • Franzeck UK, Huch A, Hoffmann U et al. (1989) Eine neue Tripel-Sonde für simultane Messungen des transkutanen Sauerstoffpartialdruckes in Kombination mit Laser-Doppler-Fuxmetrie und dynamischer Fluoreszenz-Videomikroskopie. Vasa 27 [Suppl] 155–57

    Google Scholar 

  • Huber M, Franzeck UK, Bollinger A (1984) Permeability of superficial lymphatic capillaries in human skin to FITC-labelled dextrans 40000 und 150000. Int J Microcirc: Clin Exp 3:59–69

    CAS  Google Scholar 

  • Huch A, Franzeck UK, Huch R, Bollinger A (1983) A transparent transcutaneous oxygen electrode for simultaneous studies of skin capillary morphology, flow dynamics and oxygénation. Int J Microcirc: Clin Exp 2:103–108

    CAS  Google Scholar 

  • Isenring G, Franzeck UK, Bollinger A (1982a) Fluoreszenz-Mikrolymphographie am medialen Malleolus bei Gesunden und Patienten mit primärem Lymphödem. Schweiz Med Wochenschr 112:225–231

    PubMed  CAS  Google Scholar 

  • Isenring G, Franzeck UK, Bollinger A (1982b) Lymphatische Mikroangiopathie bei chronisch-venöser Insuffizienz (CVI). Vasa 11:104–110

    PubMed  CAS  Google Scholar 

  • Intaglietta M, Tompkins WR (1973) Microvascular measurements by video image shearing and splitting. Microvasc Res 5:309:312

    Article  PubMed  CAS  Google Scholar 

  • Intaglietta M, Pawula RF, Tompkins WR (1970) Pressure measurements in the mammalian microvasculature. Microvasc Res 2:212:220

    Article  PubMed  CAS  Google Scholar 

  • Intaglietta M, Silverman NR, Tompkins WR (1975) Capillary flow velocity measurements in vivo and in situ by television methods. Microvasc Res 10:165–179

    Article  PubMed  CAS  Google Scholar 

  • Intaglietta M, Mirhashemi S, Tompkins WR (1989) Capillary fluxmeter: The simultaneous measurement of hematocrit, velocity and flux. Int J Microcirc: Clin Exp 8:313–320

    CAS  Google Scholar 

  • Jünger M, Frey-Schnewlin G, Bollinger A (1989) Microvascular flow distribution and transcapillary diffusion at the forefoot in patients with peripheral ischemia. Int J Microcirc: Clin Exp 8:3–24

    Google Scholar 

  • Jung F, Berthold R, Wappler M et al. (1987) Referenzbereich kapillargeometrischer Größen anscheinend gesunder Probanden im Alter zwischen 6 und 65 Jahren. Vasa 20 [Suppl]: 109–112

    PubMed  CAS  Google Scholar 

  • Kaufman AG, Intaglietta M (1985) Automated diameter measurement of vasomotion by cross-correlation. Int J Microcirc: Clin Exp 4:45–53

    CAS  Google Scholar 

  • Konecny U, Ehringer H, Jung M et al. (1987) “Mapping” der Kapillardichte an Händen und Füßen bei Gesunden. Vasa 20 [Suppl]: 113–116

    PubMed  CAS  Google Scholar 

  • Leyhe A (1987) Kapillarmikroskopische Befunde bei Patienten mit Kollagenosen und rheumatoider Arthritis—Wertigkeit und Bedeutung als Aktivitätsparameter. Vasa 20 [Suppl]: 117–119

    Google Scholar 

  • Mahler F (1979) Dynamische Messung des Blutdrucks in den menschlichen Nagelfalz-Kapillaren. Fortschr Med 97:873–876

    PubMed  CAS  Google Scholar 

  • Mahler F, Muheim MH, Intaglietta M et al. (1979) Blood pressure fluctuations in human nailfold capillaries. Am J Physiol 236:H888–H893

    PubMed  CAS  Google Scholar 

  • Mahler F, Meßmer K, Hammersen F (Hrsg) (1986) Techniques in clinical capillary microscopy. Prog Appl Microcirc 11, Karger, Basel

    Google Scholar 

  • Mahler F, Zürcher S, Fuchs C, Linder HR (1987) Quantitative Parameter zur Morphologie der Nagelfalzkapillaren bei Normalpersonen, Patienten mit Bindegewebserkrankungen und Diabetes mellitus. Vasa 20 [Suppl]: 120

    Google Scholar 

  • Mahler F, Meier B, Bollinger A (1980) Fluß-und Druckmessungen in der Mikrozirkulation beim Menschen. In: Müller-Wiefel H (Hrsg) Mikrozirkulation und Blutrheologie. Witzstrock, Baden-Baden, S 34–41

    Google Scholar 

  • Maricq HR (1983) Microangiopathy in systemic scleroderma and related disorders. Inter Angio 2:119–128

    Google Scholar 

  • Maricq HR, Harper FE, Khan MM et al. (1983) Microvascular abnormalities as possible predictors of disease subsets in Raynaud phenomenon and early connective tissue disase. Clin Exp Rheumatol 1:195–205

    PubMed  CAS  Google Scholar 

  • Moneta G, Brülisauer M, Jäger K, Bollinger A (1987) Infrared fluorescence videomicroscopy of skin capillaries with indocyanine green. Int J Microcirc: Clin Exp 6:25–34

    CAS  Google Scholar 

  • Pries AR (1988) A versatile video image analysis system for microcirculatory research. Int J Microcirc: Clin Exp 7:327

    CAS  Google Scholar 

  • Ranft J, Heidrich H (1986) Vital capillary-microscopic findings in normal subjects, patients with peripheral arterial occlusive disease (Fontaine II to IV) and patients with thrombangiitis obliterans. Vasa 15:138–142

    PubMed  CAS  Google Scholar 

  • Slaaf DW, Tangelder GJ, Reneman RS et al. (1987) A versatile incident illuminator for intravital microscopy. In J Microcirc: Clin Exp 6:391–397

    CAS  Google Scholar 

  • Stein M, Parker C (1971) Reactions following intravenous fluorescein. Am J Ophthalmol 72:861–868

    PubMed  CAS  Google Scholar 

  • Tooke JE (1986) Die Druckmessung in den Nagelfalzkapillaren. In: Methoden der klinischen Kapillarmikroskopie. Karger, Basel, S 65–80

    Google Scholar 

  • Tyml K, Ellis CG (1982) Evaluation of the flying spot technique as a television method for measuring red cell velocity in microvessels. Int J Microcirc: Clin Exp 1:145–155

    CAS  Google Scholar 

25.2

  • Becker F, Kieffer F, Raoux MH et al. (1990) Transcutaneous oxygen pressure and chronic peripheral Arterial occlusive disease. In: Messmer K (ed) Ischemic diseases and the microcirculation—New results. Zuckschwerdt, München, pp 48–55

    Google Scholar 

  • Bongard O, Krähenbühl B (1988) Predicting amputation in severe ischaemia-The value of transcutaneous pO2 measurement. J Bone Joint Surg 70B: 465–467

    Google Scholar 

  • Creutzig A, Dau D, Alexander K (1984) Transkutaner Sauerstoffdruck während intraarterieller Infusionen. Vasa 13:207–212

    PubMed  CAS  Google Scholar 

  • Creutzig A, Wrabetz W, Lux M, Alexander K (1985) Muscle tissue oxygen pressure in patients with arterial occlusive disease. Microvas Res 29:350

    Article  CAS  Google Scholar 

  • Creutzig A, Dau D, Capsary L, Alexander K (1987) Transcutaneous oxygen pressure measured at two different electrode core temperatures in healthy volunteers and patients with arterial occlusive disease. Int J Microcirc: Clin Exp 5:373–380

    CAS  Google Scholar 

  • Creutzig A, Caspary L, Alexander K (1989) Der transkutane Sauerstoffdruck während intravenöser Iloprost-Infusion ändert sich dosisabhängig. Vasa suppl 27:101–104

    Google Scholar 

  • Ehrly AM (Hrsg) (1981) Messung des Gewebesauerstoffdruk-kes bei Patienten. Witzstrock, Baden-Baden

    Google Scholar 

  • Ehrly AM, Schroeder W (1977) Oxygen pressure in ischemic muscle tissue of patients with chronic occlusive arterial diseases. Angiology 28:101–108

    Article  PubMed  CAS  Google Scholar 

  • Ehrly AM, Schroeder W (1978) Oxygen pressure in ischemic muscle tissue: A new diagnostic method for evaluating patients with peripheral arterial occlusion. Vasc Surg 12:215–219

    Article  Google Scholar 

  • Ehrly AM, Schroeder W (1979) Zur Pathophysiologie der chronischen arteriellen Verschlußerkrankung — Mikrozirkulatorische Blutverteilungsstörungen in der Skelettmuskulatur. Herz Kreisl 11:275–281

    Google Scholar 

  • Fleckenstein W, Weiss, C, Heinrich R, Schomerus H, Kersting T (1984) A new method for the bed-side recording of tissue pO2-histograms. Verh Dtsch Ges Inn Med 90:439–443

    Google Scholar 

  • Franzeck UK, Talke P, Bernstein EF et al. (1982) Transcutaneous pO2 measurements in health and peripheral arterial occlusive disease. Surgery 91:156–163

    PubMed  CAS  Google Scholar 

  • Franzeck UK, Bollinger A, Huch R, Huch A (1984) Transcutaneous oxygen tension and capillary characteristics and density in patients with chronic venous incompetence. Circulation 70:806–811

    Article  PubMed  CAS  Google Scholar 

  • Grunewald W (1969) Digitale Simulation eines räumlichen Diffusionsmodelles der O2-Versorgung biologischer Gewebe. Pflügers Arch 309:266–284

    Article  PubMed  CAS  Google Scholar 

  • Grunewald W (1971) Einstellzeit der Pt-Elektrode bei Messungen nicht stationärer O2-Partialdrucke. Pflügers Arch 322:109–130

    Article  PubMed  CAS  Google Scholar 

  • Hauser CJ, Shoemaker WC (1983) Use of a transcutaneous pO2 regional perfusion index to quantify tissue perfusion in peripheral vascular disease. Ann Surg 197:337–343

    Article  PubMed  CAS  Google Scholar 

  • Hauser CJ, Appel P, Shoemaker WC (1984) Pathophysiologic classification of peripheral vascular disease by positional changes in regional transcutaneous oxygen tension. Surgery 95:689–693

    PubMed  CAS  Google Scholar 

  • Hauss J, Schönleben K, Spiegel HU (1982) Therapiekontrolle durch Überwachung des Gewebe-pO2. Huber, Bern

    Google Scholar 

  • Howd A, Proud G, Chamberlain J (1988) Transcutaneous oxygen monitoring as an indication of prognosis in critical ischaemia of the lower limb. Eur J Vasc Surg 2:27–30

    Article  PubMed  CAS  Google Scholar 

  • Huch R, Huch A, Lübbers DW (1981) Transcutaneous pO2. Thieme, Stuttgart

    Google Scholar 

  • Kessler M, Grunewald W (1965) Possibilities of measuring oxygen pressure fields in tissue by multiwire platinum electrodes. Prog Resp Res 3. Karger, Basel, pp. 147–152

    Google Scholar 

  • Lübbers DW (1987) Possibilities and limitations of the transcutaneous measuring technique — A theoretical analysis. Adv Exp Med Biol 220:9–17

    PubMed  Google Scholar 

  • Lübbers DW, Baumgärtl H, Fabel H et al. (1969) Principle of construction and application of various platinum electrodes. Progr Resp Res 3. Karger, Basel, pp 136–146

    Google Scholar 

  • Malone JM, Leal JM, Moore WS et al. (1981) The “Gold standard” for amputation level selection: Xenon-133 clearance. J Surg Res 30:449–455

    Article  PubMed  CAS  Google Scholar 

  • McCollum PT, Spencer VA, Walker WF (1986) Oxygen inhalation induced changes in the skin as measured by transcutaneous oxymetry. Br J Surg 73:882–885

    Article  PubMed  CAS  Google Scholar 

  • Partsch H (1985) Transkutane-pO2-Messung in der Umgebung venöser und neurotrophischer Ulcera. In: Ehrly AM, Hauss J, Huch R (eds) Klinische Sauerstoffdruckmessung. Münchner Wissenschaftliche Publikationen, pp 140-144

    Google Scholar 

  • Ranft J, Heidrich H, Hirche H (1988) Variabilität des tcpO2 bei wiederholter Messung an Patienten mit peripherer arterieller Verschlußkrankheit. Vasa suppl 23:51–53

    PubMed  CAS  Google Scholar 

  • Rooth G, Huch A, Huch R (1987) Transcutaneous oxygen monitors are reliable indicators of arterial oxygen tension (if used correctly). Pediatrics 79:283–286

    PubMed  CAS  Google Scholar 

  • Scheffler A, Rieger H (1992a) A comparative analysis of transcutaneous oxymetry during oxygen inhalation and leg dependency in severe peripheral arterial occlusive disease. J Vasc Surg 16:218–224

    Article  PubMed  CAS  Google Scholar 

  • Scheffler A, Rieger H (1992b) Clinical information content of transcutaneous oxymetry (tcpO2 in peripheral arterial occlusive disease-A review of the methodological and clinical literature with a special reference to critical limb ischaemia. Vasa 21:111–126

    PubMed  CAS  Google Scholar 

  • Scheffler A, Eggert S, Rieger H (1992) Influence of clinical findings, positional changes and systolic ankle arterial pressure on transcutaneous oxygen tension in peripheral arterial occlusive disease. Eur J Clin Invest 22:420–426

    Article  PubMed  CAS  Google Scholar 

  • Spence VA, McCollum PT, McGregor IW et al. (1985) The effect of transcutaneous electrode on the variability of dermal oxygen changes. Clin Phys Physiol Meas 6:139–145

    Article  PubMed  CAS  Google Scholar 

  • Spiegel HU, Hauss J, Schönleben K, Bünte H (1987) Theory and methods of local tissue-pO2 in experimental angiology. Angiology 38:1–12

    Article  PubMed  CAS  Google Scholar 

  • Sunder-Plassmann L, Messmer K, Becker HM (1981) Tissue pO2 and transcutaneous pO2 as guidelines in experimental and clinical drug evaluation. Angiology 32:686–698

    Article  PubMed  CAS  Google Scholar 

  • Svedman P, Holmberg J, Jacobsson S et al. (1982) On the relation between transcutaneous oxygen tension and skin blood flow. Scand J Plast Reconstr Surg 16:133–140

    Article  PubMed  CAS  Google Scholar 

  • Wyss CR, Matsen III FA, King RV et al. (1981) Dependence of transcutaneous oxygen tension on local arteriovenous pressure gradient in normal subjects. Clin Sci 60:499–506

    PubMed  CAS  Google Scholar 

25.3

  • Andersson S, Linderholm H, Rinnström O, Burlin L (1986) A laser Doppler technique for measuring distal blood pressure: a comparison with conventional strain-gauge technique. Clin Physiol 6:329–335

    Article  PubMed  CAS  Google Scholar 

  • Belcaro G, Rulo A, Vasdekis S, Williams MA, Nicolaides AN (1988) Combined evaluation of postphlebitic limbs by laser Doppler flowmetry and transcutaneous pO2 and pCO2 measurements. Vasa 17:259–261

    PubMed  CAS  Google Scholar 

  • Belcaro G, Vasdekis S, Rulo A, Nicolaides AN (1989) Evaluation of skin blood flow and venoarteriolar response in patients with diabetes and peripheral vascular disease by laser Doppler flowmetry. Angiology 40:953–957

    Article  PubMed  CAS  Google Scholar 

  • Boccalon H, Marguery MC, Ginestet MC, Puel M (1987) Combined cutaneous thermal tests and laser Doppler flowmetry in vascular acrosyndromes. J Mal Vas 1:100–109

    Google Scholar 

  • Bongard O, Fagrell B (1990) Discrepancies between total and nutritonal skin microcirculation in patients with peripheral arterial occlusive disease (PAOD). Vasa 19:105–111

    PubMed  CAS  Google Scholar 

  • Bonner R, Nossal R (1981) Model for laser Doppler measurements of blood flow in tissue. Appi Optics 20:2097–2107

    Article  CAS  Google Scholar 

  • van den Brande P, De Coninck A, Lievens P (1997) Skin Microcirculation Responses to Severe Local Cooling. Int J Microcirc 17:55–60

    Article  Google Scholar 

  • Caspary L, Creutzig A, Alexander K (1988) Biological zero in laser Doppler fluxmetry. Int J Microcirc: Clin Exp 7:367–371

    CAS  Google Scholar 

  • Castronouvo JJ, Pabst TS, Flanigan DP, Foster LG (1987) Temperature-dependent laser Doppler fluxmetry in healthy and patients with peripheral arterial occlusive disease. Int J Microcirc: Clin Exp 6:381–390

    Google Scholar 

  • Creutzig A, Caspary L, Alexander K (1988) Disturbances of skin microcirculation in patients with chronic arterial occlusive disease and venous incompetence. Vasa 17:77–83

    PubMed  CAS  Google Scholar 

  • Driessen G, Rütten W, Inhoffen W, Scheldt H, Heidtmann H (1990) Is the laser Doppler flow signal a measure of microcirculatory cell flux? Int J Microcirc: Clin Exp 9:141–161

    CAS  Google Scholar 

  • Fagrell B (1990) Peripheral vascular diseases. In: Shepherd AP, Öberg PA (eds) Laser-Doppler blood flowmetry. Kluwer Academic Boston Dordrecht London, pp 201–213

    Chapter  Google Scholar 

  • Guercio R del, Leonardo G, Arpaia MR (1986) Evaluation of postischemic hyperemia on the skin using laser Doppler velocimetry: Study on patients with claudicatio intermittens. Microvasc Res 32:289–299

    Article  PubMed  Google Scholar 

  • Hoffmann U, Schneider E, Bollinger A (1990a) Flow motion waves with high and low frequency in severe ischaemia before and after percutaneous transluminal angioplasty. Cardiovasc Res 24:711–718

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann U, Yanar A, Franzeck UK, Edwards JM, Bollinger A (1990b) The frequency histogram — A new method for the evaluation of laser Doppler flux motion. Microvasc Res 40:293–301

    Article  PubMed  CAS  Google Scholar 

  • Kristensen JK, Engelhart M, Nielsen T (1983) Laser-Doppler measurement of digital blood flow regulation in normals and in patients with Raynaud’s phenomenon. Acta Derm Venereol (Stockh) 63:43–47

    CAS  Google Scholar 

  • Kvernebo K, Slagsvold CE, Stranden E (1989) Laser Doppler flowmetry in evaluation of skin post-ischaemic reactive hyperaemia. J Cardiovasc Surg 30:70–75

    CAS  Google Scholar 

  • Nilsson GE, Tenland T, Öberg PA (1980a) A new instrument for continuous measurement of tissue blood flow by light beating spectroscopy. IEE E Trans Biomed Eng 27:12–19

    Article  CAS  Google Scholar 

  • Nilsson GE, Tenland T, Öberg PA (1980b) Evaluation of a laser Doppler flowmeter for measurement of tissue blood flow. IEEE Trans Biomed Eng 27:597–604

    Article  PubMed  CAS  Google Scholar 

  • Ninet J, Fronek A (1985) Laser Doppler flux monitored cutaneous response to local cooling and heating. Vasa 14:38–43

    PubMed  CAS  Google Scholar 

  • Ranft J (1988) Stellenwert der Laser-Doppler-Untersuchung bei Patienten mit arterieller Verschlußkrankheit. Herz 13:382–391

    PubMed  CAS  Google Scholar 

  • Ranft J, Heidrich H, Peters A, Trampisch H (1986) Laser-Doppler examinations in persons with healthy vasculature and in patients with peripheral arterial occlusive disease. Angiology 37:818–827

    Article  PubMed  CAS  Google Scholar 

  • Scheffler A, Rieger H (1990) A microcomputer system for evaluation of laser Doppler blood flux measurements. In J Microcirc: Clin Exp 9:357–368

    CAS  Google Scholar 

  • Scheffler A, Rieger H (1992) Spontaneous oscillations of laser Doppler skin blood flux in peripheral arterial occlusive disease. Int J Microcirc: Clin Exp 11:249–261

    CAS  Google Scholar 

  • Seifert H, Jäger K, Bollinger A (1988) Analysis of flow motion by the laser Doppler technique in patients with peripheral arterial occlusive disease. Int J Microcirc: Clin Exp 7:223–236

    CAS  Google Scholar 

  • Shepherd AP, Öberg PA (eds) (1990) Laser-Doppler blood flowmetry. Kluwer Academic, Boston Dordrecht London

    Google Scholar 

  • Stern MD (1975) In vivo evaluation of microcirculation by coherent light scattering. Nature 254:56–58

    Article  PubMed  CAS  Google Scholar 

  • Svensson H, Bornmyr S, Svedman P (1990) Skin perfusion pressure assessed by measuring the external pressure required to stop blood cell flux. Angiology 41:169–174

    Article  PubMed  CAS  Google Scholar 

  • Tenland T, Salerud EG, Nilsson GE, Öberg PA (1983) Spatial and temporal variations in human skin blood flow. Int J Microcirc: Clin Exp 2:81–90

    CAS  Google Scholar 

  • Tur E, Tur M, Maibach HI, Guy RH (1983) Basal perfusion of the cutaneous microcirculation: Measurements as a function of anatomic position. J Invest Dermatol 81:442–446

    Article  PubMed  CAS  Google Scholar 

25.4

  • Driessen G, Rütten W, Inhoffen W, Scheldt H, Heidtmann H (1990) Is the laser Doppler flow Signal a measure of microcirculatory cell flux? Am J Microcirc Clin Exp 9 2:141–161

    CAS  Google Scholar 

  • Essex T JH, Byrne PO (1991) A laser Doppler scanner for imaging blood flow in skin. J Biomed Eng 13:189–194

    Article  PubMed  CAS  Google Scholar 

  • Fujii H, Nohira K, Yamamoto Y, Ikawa H, Okura T (1987) Evaluation of blood flow by laser speckle imaging sensing. Applied Optics 26:5321–5325

    Article  PubMed  CAS  Google Scholar 

  • Geschwandter ME, Amadi R, Noppensteiner R, Minar E, Schiever G, Stumpflen A, Ehringer H (1994) Acute action of Alprostadie and Ilopron on laser flux in ischemic leg ulcers. Int. Angiol. 13:3 (Supple)

    Google Scholar 

  • Lewis DH, Gustafsson U (1994) Laser Doppler flowmetry. Int J Microcirc 14 3:187

    Google Scholar 

  • Lindén M, Sirsjö A, Nillsson G, Lindblom L, Gidlöf A (1994) Measurements of skeletal muscle blood flow in the rabbit tenuissimus muscle using laser Doppler perfusion imaging and intravital microscopy combined. Int J Microcirc Clin Exp 14:190

    Google Scholar 

  • Nilsson GE, Turland T, Öberg P (1980) A new instrument for continous measurement of tissue blood flow by light beating spectroscopy. IEEE Trans Biomed Eng 27:537–604

    Google Scholar 

  • Rütten W (1994) Untersuchungen zu Laser-Doppler-Verfahren in stark streuenden Medien mit Hilfe der Monte-Carlo-Methode. Med. Dissertation, RWTH Aachen

    Google Scholar 

  • Shepherd AP, Oberg PA (1990) Laser Doppler Blood flowmetry. Kluwer Academic, The Hague

    Book  Google Scholar 

  • Wardell K, Jakobsson A, Nilsson GE (1993) Laser doppler perfusion imaging by dynamic light scattering. IEEE Trans Biomed Eng 40:309–316

    Article  PubMed  CAS  Google Scholar 

  • Wardell K (1994) Laser Doppler Perfusion Imaging. Methodology and skin applications Linköping Studies in Science and Technology dissertations No 329. Linköping Sweden.

    Google Scholar 

  • Wardell K, Naver HK, Nisson GE, Wallin BG (1993) The cutaneous vascular axon reflex in humans characterized by laser doppler perfusion imaging. J Physiol 460:185–199

    PubMed  CAS  Google Scholar 

  • Wardell K, Naver HK, Nilsson GE, Wallin BG (1993) The Cutaneous vascular axon reflex in humans characterized by laser doppler perfusion imaging. J Physiol 460:185–199

    PubMed  CAS  Google Scholar 

25.5

  • Bjerre-Jepsen K, Faris I, Henriksen O, Lassen NA (1982a) Subcutaneous blood flow over 24-hours periods in patients with severe leg ischaemia. Clin Physiol 2:357–362

    Article  PubMed  CAS  Google Scholar 

  • Bjerre-Jepsen K, Faris I, Henriksen O, Tonnesen KH (1982b) Determination of the subcutaneous blood to tissue partition coefficient in patients with severe leg ischaemia by a double isotope washout technique. Clin Physiol 2:479–487

    Article  PubMed  CAS  Google Scholar 

  • Chen RYZ, Fan FC, Kim S et al. (1980) Tissue-blood partition coefficient for Xenon: temperature and hematocrit dependence. J Appl Physiol 49:178–183

    PubMed  CAS  Google Scholar 

  • Eickhoff JH, Henriksen O (1985) Local regulation of subcutaneous forefoot blood flow during orthostatic changes in normal subjects, in sympathetically denervated patients and in patients with occlusive arterial disease. Cardivasc Res 19:219–227

    Article  CAS  Google Scholar 

  • Holstein P, Lund P, Larsen B, Schomaker T (1977) Skin perfusion pressure measured as the external pressure required to stop isotope washout. Scand J Clin Lab Invest 37:649–659

    Article  PubMed  CAS  Google Scholar 

  • Holstein P, Dovey H, Lassen NA (1979a) Wound healing in below-knee amputations in relation to skin perfusion pressure. Acta Orthop Scand 50:49–58

    Article  PubMed  CAS  Google Scholar 

  • Holstein, P, Dovey H, Lassen NA (1979b) Wound healing in above-knee amputations in relation to skin perfusion pressure. Acta Orthop Scand 50:59–66

    Article  PubMed  CAS  Google Scholar 

  • Jelnes R, Bülow J (1984) Evaluation of a method for determination of the subcutaneous blood flow in the forefoot continuously over 24 hours. Scand J Clin Lab Invest 44:85–90

    Article  PubMed  CAS  Google Scholar 

  • Jelnes R, Tonnesen KH (1984) Nocturnal foot blood flow in patients with arterial insufficiency. Clin Sci 67:89–95

    PubMed  CAS  Google Scholar 

  • Jelnes R, Rasmussen LB, Eickhoff JH (1984) Direct determination of the tissue-to-blood partition coefficient for Xenon in human subcutaneous adipose tissue. Scand J Clin Lab Invest 44:643–647

    Article  PubMed  CAS  Google Scholar 

  • Kety SS (1949) Measurement of regional circulation by the local clearance of radioactive sodium. Am heart J 38:321–328

    Article  PubMed  CAS  Google Scholar 

  • Larsen OA, Lassen NA, Quade F (1966) Blood flow through human adipose tissue determined with radioactive xenon. Acta Physiol Scand 66:337–345

    Article  PubMed  CAS  Google Scholar 

  • Lassen NA, Lindjurg J, Munck O (1964) Measurement of blood flow through skeletal muscle by intramuscular injection of xenon-133. Lancet I:686–689

    Article  Google Scholar 

  • Malone JM, Anderson GG, Lalka SG et al. (1987) Prospective comparison of noninvasive techniques for amputation level selection. Am J Surg 154:179–184

    Article  PubMed  CAS  Google Scholar 

  • Moore WS, Henry RE, Malone JM et al. (1981) Prospective use of Xenon Xe 133 clearance for amputation level selection. Arch Surg 116:86–88

    Article  PubMed  CAS  Google Scholar 

  • Sejrsen P (1971) Measurement of cutaneous blood flow by freely diffusible radioactive isotopes. Dan Med Bull 18:1–38

    Google Scholar 

  • Silverstein EB, Thomas S, Cline J (1983) Predictive value of intracutaneous xenon clearance of healing of amputation and cutaneous ulcer sites. Radiology 147:227–229

    Google Scholar 

  • Stockel M, Jorgensen JP, Jorgensen A et al. (1981) Radioisotope washout technique as a routine method for selection of amputation level. Acta orthop scand 52:405–408

    Article  PubMed  CAS  Google Scholar 

  • Fronek A (1985) Noninvasive evaluation of the cutaneous circulation. In: Bernstein EF (ed) Noninvasive diagnostic techniques in vascular disase. CV Mosby, St. Louis, pp 694–707

    Google Scholar 

  • Stosseck K, Lübbers DW, Cottin N (1974) Determination of local blood flow (microflow) by electrochemically generated hydrogen. Pflügers Arch 348:225–238

    Article  PubMed  CAS  Google Scholar 

  • Tanaka K, Ito K, Oghi S et al. (1984) Measurement of regional blood flow by electrochemically generated hydrogen gas clearance in ischemic legs. In: Maurer HJ (Hrsg) 3. Dtsch-Jap Kongr Angiol Heidelberg, Demeter, Gräfeling, S 204-206

    Google Scholar 

  • Wodick R (1976) Möglichkeiten und Grenzen der lokalen Wasserstoffclearance. Akademie der Wissenschaften und der Literatur, Mainz

    Google Scholar 

25.6

  • Delori FC, Ben-Sira I, Trempe C (1976) Fluorescein angiography with an optimized filter combination. Am J Ophthalmol 82:559–564

    PubMed  CAS  Google Scholar 

  • Ehrlich P (1882) Ueber provocirte Fluorescenzerscheinungen am Auge. Dtsch Med Wochensch 8:21–22, 35-37, 54-55

    Article  Google Scholar 

  • Graham BH, Walton RL, Elings VB, Lewis FR (1983) Surface quantification of injected fluorescein as a predictor of flap viability. Plast Reconstr Surg 71:826–831

    Article  PubMed  CAS  Google Scholar 

  • Koch E (1922) Die Stromgeschwindigkeit des Blutes. Dtsch Arch Klin Med 140:39–66

    Google Scholar 

  • Lange K, Boyd LJ (1944) Use of fluorescein method in establishment of diagnosis and prognosis of peripheral vascular diseases. Arch Intern Med 74:175–184

    Article  CAS  Google Scholar 

  • Lanzafame RJ, Nairn JO, Blackman JR, Hinshaw JR (1985) Streamlined fluorescein photography. Surg Gynecol Obstet 160:356–357

    PubMed  CAS  Google Scholar 

  • Lund F (1981) An atlas of clinical fluorescein angiography in functional evaluation of nutritional blood perfusion and microvascular permeability of the skin, mucous membranes and visceral organs. In: Jagenau AHM (ed) Noninvasive methods on cardiovascular haemodynamics. Elsevier, Amsterdam, pp 357–392

    Google Scholar 

  • Lund F, Lund S (1973) Dynamic fluorescein angiography by rapid sequence still-photo recording-A new technique for assessment of circulation time and adequacy of skin blood flow in the limbs. Bibl Anat 11:13–18

    PubMed  CAS  Google Scholar 

  • Perbeck L (1985) Fluorescein flowmetry-A blood flow measurement method. Thesis, gotab, Stockholm

    Google Scholar 

  • Perbeck L, Lewis D, Thulin L, Tyden G (1985) Correlation between fluorescein flowmetry, 133-Xenon clearance and electromagnetic flow measurement-A study in the intestine of the pig. Clin Physiol 5:293–299

    Article  PubMed  CAS  Google Scholar 

  • Perbeck L, Sevastik B, Sonnenfeld T (1987) The transcapillary exchange of sodium fluorescein in ischaemic limbs measured by fluorescein flowmetry. Clin Physiol 7:95–103

    Article  PubMed  CAS  Google Scholar 

  • Scheffler A (1993) Fluoreszeinperfusographische Erfassung kutaner Mikrozirkulationsstörungen bei peripherer arte-rieller Verschlußkrankheit-Methodische Grundlagen, pathophysiologische Ergebnisse und klinische Anwendungen. Habilitationsschrift, RWTH Aachen

    Google Scholar 

  • Scheffler A, Rieger H (1989) Ein Bildverarbeitungssystem für den klinischen Einsatz der digitalen Videofluoreszeinperfusographie. Vasa(suppl) 27:86–87

    Google Scholar 

  • Scheffler A, Rieger H (1990) Akrale Hautdurchblutung nach intraarterieller Infusion gefäßerweiternder Sustanzen bei Patienten mit Claudicatio intermittens. Med Klin 85:1–5

    CAS  Google Scholar 

  • Scheffler A, Rieger H (1995) Topographical evaluation of skin perfusion patterns in peripheral arterial occlusive disease by means of computer-assisted fluorescein perfusography. Eur J Vasc Endocrin Surg 10:60–68

    Article  CAS  Google Scholar 

  • Scheffler A, Bold M, Lienke U, Rieger H (1991) Skin perfusion patterns (fluorescein perfusography) during reactive hyperemia in peripheral arterial occlusive disease. Clin Physiol 11:501–512

    Article  PubMed  CAS  Google Scholar 

  • Scheffler A, Jendryssek J, Rieger H (1992) Redistribution of skin blood flow during leg dependency in peripheral arterial occlusive disease. Clin Physiol 12:425–438

    Article  PubMed  CAS  Google Scholar 

  • Silverman DG, LaRossa DD, Barlow CH et al. (1980) Quantification of tissue fluorescein delivery and prediction of flap viability with the fiberoptic dermofluorometer. Plast Reconstr Surg 66:545–553

    Article  PubMed  CAS  Google Scholar 

  • Wallin L, Björnsson H, Stenström A (1989a) Fluorescein angiography for predicting healing of foot ulcers. Acta Orthop Scand 60:40–44

    Article  PubMed  CAS  Google Scholar 

  • Wallin L, Lund F, Westling H (1989b) Fluorescein angiography and distal arterial pressure in patients with arterial disease of the legs. Clin Physiol 9:467–480

    Article  PubMed  CAS  Google Scholar 

  • Wollheim E, Lange K (1931) Die Kreislaufzeit und ihre Beziehung zu anderen Kreislaufgrößen. Verh Dtsch Ges Inn Med 43:134–140

    Google Scholar 

25.7

  • Artmann G (1986) A microscopic photometric method for measuring erythrocyte deformability. Clin Hemorheol 6:617–627

    Google Scholar 

  • Chien S (1970) Shear dependence of effective cell volume as a determinant of blood viscosity. Science 168:977–979

    Article  PubMed  CAS  Google Scholar 

  • Chien S, Sung LA (1987) Physicochemical basis and clinical implications of red cell aggregation. Clin Hemorheol 7:71–91

    CAS  Google Scholar 

  • Chmiel H, Anadere I, Walitza E (1990) The determination of blood viscoelasticity in clinical hemorheology. Clin Hemorheol 10:363–374

    Google Scholar 

  • Cokelet GR, Merrill EW, Gilliland ER, Shin H (1963) The rheology of human blood measurements near and at zero shear rate. Trans Soc Rheol 7:303–317

    Article  Google Scholar 

  • Copley AL (1985) The history of clinical hemorheology. Clin Hemorheol 5:765–811

    Google Scholar 

  • Dintenfass L, Jedrzejczyk H, Willard A (1981) Application of stereological methods to evaluation of aggregation of red cells in 12.5 μm slit: A photographic and statistical study. Biorheol 18:387–404

    CAS  Google Scholar 

  • Donner M, Siadat M, Stoltz JF (1988) Erythrocyte aggregation: approach by light scattering determination. Biorheol 25:367–377

    CAS  Google Scholar 

  • Donner M, Mills P, Stoltz JF (1989) Influence of plasma proteins on erythrocyte aggregation. Clin Hemorheol 9:715–721

    Google Scholar 

  • Dormandy JA (1981) Measurement of whole blood viscosity. In: Lowe GDO, Barbenel JC, Forbes CD (eds) Clinical aspects of blood viscosity and cell deformability. Springer, Berlin Heidelberg New York, pp 67–78

    Chapter  Google Scholar 

  • Dormandy JA, Flute PT, Martrai A et al. (1985) The new St. George’s blood filtrometer. Clin Hemorheol 5:975–983

    Google Scholar 

  • Ernst E, Matrai A (1988) The measurement of plasma viscosity: Experience with four commercially available instruments. Clin Hemorheol 8:851–859

    Google Scholar 

  • Ernst E, Koenig W, Matrai A, Keil U (1986) Hämorheologische Variablen bei manifesten arteriellen Erkrankungen. Vasa 15:365–371

    PubMed  CAS  Google Scholar 

  • Hamann H, Cyba-Altunbay S (1995) Die präoperative Bestimmung der optimalen Amputationshöhe im Endstadium der pAVK. VASA 24:258–260

    PubMed  CAS  Google Scholar 

  • Hanss M (1983) Erythrocyte filtrability measurement by the initial flow rate method. Biorheol 20:199–211

    CAS  Google Scholar 

  • International Committee for Standardization in Haematology (ICSH) (1984) Recommendation for a selected method for the measurement of plasma viscosity. J Clin Pathol 37:1147–1152

    Article  Google Scholar 

  • International Committee for Standardization in Haematology (ICSH) (1986) Guidelines for measurement of blood viscosity and erythrocyte deformability. Clin Hemorheol 6:439–453

    Google Scholar 

  • Jung F, Roggenkamp HG, Ringelstein EB et al. (1985) Das Kapillarschlauch-Plasmaviskosimeter: Methodik, Quali-tätskontrolle und Referenzbereich. Biomed Tech 30:152–158

    Article  CAS  Google Scholar 

  • Kiesewetter H, Radtke H, Schneider R et al. (1982a) Das Mini-Erythrozyten-Aggregometer: Ein neues Gerät zur schnellen Quantifizierung des Ausmaßes der Erythrozytenaggregation. Biomed Tech 27:209–213

    Article  CAS  Google Scholar 

  • Kiesewetter H, Dauer U, Teitel P, Trapp R (1982b) The single pore rigidometer (SER) as a reference for RBC deformability. Biorheol 19:737–753

    CAS  Google Scholar 

  • Kiesewetter H, Jung F, Spitzer S, Wenzel E (1989) Die Fließeigenschaften des Blutes und ihre klinische Bedeutung beim arteriellen Gefäßpatienten. Internist 30:420–428

    PubMed  CAS  Google Scholar 

  • Matrai A, Ernst E, Flute PT, Dormandy JA (1984) Blood filterability in peripheral vascular disease-Red cell deformability or cell sticking? Clin Hemorheol 4:311–325

    Google Scholar 

  • Matrai A, Whittington RB, Ernst E (1987) A simple method of estimating whole blood viscosity at standardized hematocrit. Clin Hemorheol 7:261–265

    Google Scholar 

  • Mussler K, Teitel P (1979) The Filtrometer-An automatic electronic instrument for investigation of flow behaviour of red blood cells at low shear stresses. Biorheol 16:506

    Google Scholar 

  • Nash GB (1990) Filterability of blood cells: Methods and clinical applications. Clin Hemorheol 10:353–362

    Google Scholar 

  • Nash GB, Jones JG, Mikita J, Dormandy JA (1988a) Methods and theory for analysis of flow of white cells subpopulations through micropore filters. Br J Haematol 70:165–170

    Article  PubMed  CAS  Google Scholar 

  • Nash GB, Jones JG, Mikita J et al. (1988b) Effects of preparative procedures and of cell activation on flow of white cells through micropore filters. Br J Haematol 70:171–176

    Article  PubMed  CAS  Google Scholar 

  • Nash GB, Thomas P, Dormandy JA (1988c) Abnormal flow properties of white blood cells in patients with severe ischaemia of the leg. Brit Med J 296:1699–1701

    Article  CAS  Google Scholar 

  • Reid HL, Dormandy JA, Barnes AJ et al. (1976) Impaired red cell deformability in peripheral vascular disease. Lancet 11:666–667

    Article  Google Scholar 

  • Scheffler A, Rieger H (1984) Die Erythrozytenfiltration-Eine klinisch relevante Methode zur Charakterisierung der „Erythrozytenfließfähigkeit“ im Rahmen der arteriellen Verschlußkrankheit? Vasa (suppl) 12:81–97

    CAS  Google Scholar 

  • Scheffler A, Seidl R, Rieger H (1988) Optoelektronische Erfassung der scherinduzierten Erythrozytenaggregation in-vitro. Vasa (suppl) 23:288–290

    Google Scholar 

  • Scheffler A, Steinbach U, Rieger H (1991) Effects of ischaemiarelated suspension media and pore size on erythrocyte filterability in peripheral arterial occlusive disease. Clin Hemorheol 11:479–495

    Google Scholar 

  • Schmid-Schönbein H (1976) Microrheology of erythrocytes, bloot viscosity and the distribution of blood flow in the micro circulation. Int Rev Physiol 9:1–62

    PubMed  Google Scholar 

  • Schmid-Schönbein H (1984) Die Ursprünge der medizinischen Hämorheologie im 18. Jahrhundert: H. Boerhaave, A. v. Haller und G. van Swieten. Vase (suppl) 12:10–31

    Google Scholar 

  • Schmid-Schönbein H, Gallasch, G. Volger E, Klose HJ (1973) Microrheology and protein chemistry of pathological red cell aggregation (blood sludge) studied in vitro. Biorheol 10:213–227

    Google Scholar 

  • Schmidt JA, Caspary L, v. Bierbrauer A, Ehrly AM, Jünger M, Jung F, Lawall H (1997) Standardisierung der Nagelfalz-Kapillaroskopie in der Routinediagnostik. VASA 26:5–10

    PubMed  CAS  Google Scholar 

  • Seidl R, Scheffler A, Rieger H (1988) Methodische Aspekte zur Erfassung der spontanen und scherinduzierten Erythrozy-tenaggregation in-vitro. Vasa suppl 23:291–293

    Google Scholar 

  • Seiffge D (1988) Analysis of the passage of single blood cells in a single pore filtration system. Clin Hemorheol 8:445–451

    Google Scholar 

  • Skalak R, Impelluso T, Schmalzer EA, Chien S (1983) Theoretical modeling of filtration of blood cell suspensions. Biorheol 20:41–56

    CAS  Google Scholar 

  • Stone PCW, Caswell M, Nash GB, Stuart J (1990) Relative efficacy of filtrometers used to measure erythrocyte deformability. Clin Hemorheol 10:275–286

    Google Scholar 

  • Stuart J, Stone PCW, Bareford D, Bilto YY (1985) Effect of pore diameter and cell volume on erythrocyte filterability. Clin Hemorheol 5:449–461

    Google Scholar 

  • Stuart J, Keidan AJ, Stone PCW, Sowter MC (1988) Rheological study of erythrocyte sub-populations prepared by den-sity-gradient fractionation. Clin Hemorheol 8:467–475

    Google Scholar 

  • Teitel P, Leschke M, Schmid-Schönbein H (1985) Re-usable precision metal microsieves for the red cell filtrometry: the Mynipore system. Clin Hemorheol 5:243

    Google Scholar 

  • Thum J, Caspary L, Creutzig A, Stappler T, Alexander K (1997) Non invasive determination of dermal hemoglobin oxygénation and concentration in patients with peripheral arterial occlusive disease. VASA 26:11–17

    PubMed  CAS  Google Scholar 

  • Zhu JC, Stone PCW, Stuart J (1991) Rheological control preparations for test of erythrocyte filterability. Clin Hemorheol 11:113–120

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Scheffler, A., Driessen, G., Rieger, H. (1998). Klinische Methoden zur Untersuchung der Mikrozirkulation. In: Rieger, H., Schoop, W. (eds) Klinische Angiologie. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-08104-4_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-08104-4_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-08105-1

  • Online ISBN: 978-3-662-08104-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics