Advertisement

Pathophysiologie der Mikrozirkulation bei arteriellen und venösen Durchblutungsstörungen

  • P. Gaehtgens
  • A. Scheffler

Zusammenfassung

Die Differenzierung des in sich geschlossenen Kreislaufsystems in eine „Makro“- und eine „Mikrostrombahn“ birgt aus physiologischer Sicht eine gewisse Willkür in sich, da parallel zu der zunehmenden Gefäßminiaturisierung ein kontinuierlicher und nicht etwa ein abrupter Funktionswandel zu beobachten ist. So entwickelt sich aus einem relativ überschaubaren Baum der großen arteriellen Transportgefäße allmählich ein heterogenes Gefäßnetzwerk mit arteriolären Verteilungs- und kapillären Austauschaufgaben, das über venoläre Sammelgefäße in das venöse Volumenreservoir und Rücktransportsystem übergeht. Einige Krankheitsbilder sind auch dadurch gekennzeichnet, daß das Kreislaufsystem als Einheit reagiert (z.B. kardiogener oder anaphylaktischer Schock). Darüber hinaus können sich beispielsweise Perfusionsverteilungsstörungen entlang einer Extremität auf der Grundlage sehr ähnlicher Mechanismen auf verschiedenen Ebenen der zu- und abführenden Gefäße entwickeln.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Agerskov K, Henriksen O, Tonnesen KH, Lassen NA (1981) Constriction of collateral arteries induced by „head-up tilt“ in patients with occlusive arterial disease of the legs. Cardiovasc Res 15:675–679PubMedCrossRefGoogle Scholar
  2. Allwood MJ (1962) Redistribution of blood flow in limbs with obstruction of a main artery. Clin Sci 22:279–286PubMedGoogle Scholar
  3. Alonso C, Pries AR, Gaehtgens P (1989) Time-dependent rheological behaviour of blood flow at low shear in narrow horizontal tubes. Biorheology 26:229–246PubMedGoogle Scholar
  4. Belch JJ (1990) The role of the white blood cell in arterial disease. Blood Coagul Fibrinolysis 1:183–191PubMedGoogle Scholar
  5. Bollinger A, Fagrell B (1990) Clinical capillaroscopy. Hogrefe & Huber, StuttgartGoogle Scholar
  6. Bollinger A, Barras JP, Mahler F (1976) Measurement of foot artery blood pressure by micromanometry in normal subjects and in patients with arterial occlusive disease. Circulation 53:506–512PubMedCrossRefGoogle Scholar
  7. Bongard O, Fagrell B (1990) Discrepancies between total and nutritional skin micro circulation in patients with peripheral arterial occlusive disease (PAOD). Vasa 19:105–111PubMedGoogle Scholar
  8. Caspary L, Thum J, Pietzsch R, Creutzig A, Alexander A (1991) Reflexionsspektrophotometrische Bestimmung der kutanen Hämoglobinsättigung bei AVK-Patienten. Vasa (Suppl) 33:275–277Google Scholar
  9. Creutzig A, Caspary L (1994) MikroZirkulationsstörungen der Haut. Internist 35:546–556PubMedGoogle Scholar
  10. Creutzig A, Caspary L, Alexander K (1991) Skin surface oxygen pressure in healthy volunteers and patients with arterial occlusive disease. Int J Microcirc Clin Exp 10:231–240PubMedGoogle Scholar
  11. Damon DH, Duling BR (1985) Evidence that capillary perfusion heterogeneity is not controlled in striated muscle. Am J Physiol 246:H386–H392Google Scholar
  12. Ehrly AM, Schroeder W (1979) Zur Pathophysiologie der chronischen arteriellen Verschlußerkrankung. I. Mikrozir-kulatorische Blutverteilungsstörung in der Skelettmuskulatur. Herz/Kreisl 11:275–281Google Scholar
  13. Eickhoff JH (1986) Local regulation of subcutaneous blood flow and capillary filtration in limbs with occlusive arterial disease. Dan Med Bul 33:111–126Google Scholar
  14. Eickhoff JH, Henriksen O (1985) Local regulation of subcutaneous forefoot blood flow during orthostatic changes in normal subjects, in sympathetically denervated patients and in patients with occlusive arterial disease. Cardiovasc Res 19:219–227PubMedCrossRefGoogle Scholar
  15. Engler RL, Schmid-Schönbein GW, Pavelec RS (1983) Leukocyte capillary plugging in myocardial ischemia and reperfusion in the dog. Am J Pathol 111:98–111PubMedGoogle Scholar
  16. Fahraeus R (1928) Die Strömungsverhältnisse und die Verteilung der Blutzellen im Gefäßsystem. Zur Frage der Bedeutung der Erythrozytenaggregation. Klin Wochenschr 7:100–106CrossRefGoogle Scholar
  17. Fenton BM, Carr RT, Cokelet GR (1985) Nonuniform red cell distribution in 20–100 micron bifurcations. Microvasc Res 29:103–128PubMedCrossRefGoogle Scholar
  18. Folkow B (1967) Pathophysiological aspects of blood flow distal to an obliterated main artery with special regard to the possibilities of affecting the collateral resistance and the arterioles in the distal low-pressure system. Scand J Clin Lab Invest suppl 99:211–218PubMedGoogle Scholar
  19. Franzeck UK, Bollinger A, Huch R, Huch A (1984) Transcutaneous oxygen tension and capillary morphologic characteristics and density in patients with chronic venous insufficiency. Circulation 70:806–811PubMedCrossRefGoogle Scholar
  20. Franzeck UK, Haselbach P, Speiser D, Bollinger A (1993) Microangiopathy of cutaneous blood and lymphatic capillaries in chronic venous insufficiency (CVI). Yale J Biol Med 66:37–46PubMedGoogle Scholar
  21. Gaehtgens P (1987) Tube flow of human blood at near zero shear. Biorheology 24:367–376PubMedGoogle Scholar
  22. Gaehtgens P, Benner KU, Schickendantz S (1976) Nutritive and non-nutritive blood flow in canine skeletal muscle after partial microembolization. Pflügers Arch 361:183–189PubMedCrossRefGoogle Scholar
  23. Gaehtgens P, Ley K, Pries AR, Müller R (1985) Mutual interaction between leukocytes and microvascular blood flow. Progr Appl Microcirc 7:15–18Google Scholar
  24. Göbel R, Perkkiö J, Schmid-Schönbein H (1987) Compaction stasis due to gravitational red cell migration and floatational plasma skimming: reversal of the Fahraeus effect due to pathological RCA-formation in plastic tubes and mesenteric venules. Verh Ges Mikrozirk, pp. 213-220Google Scholar
  25. Goldsmith HL, Spain S (1984) Margination of leukocytes in blood flow through small tubes. Microvasc Res 27:204–222PubMedCrossRefGoogle Scholar
  26. Goldsmith HL, Cokelet GR, Gaehtgens P (1989) Robin Fahraeus: evolution of his concepts in cardiovascular physiology. Am J Physiol 257:H1005–H1015PubMedGoogle Scholar
  27. Groom AC, Ellis CG, Potter RF (1984) Microvascular architecture and red cell perfusion in skeletal muscle. Prog Appl Microci 5:64–83Google Scholar
  28. Groom AC, Ellis CG, Wrigley SM, Potter RF (1986) Architecture and flow patterns in capillary networks of skeletal muscle in frog and rat. In: Popel AS, Johnson PC (eds.) Microvascular networks: experimental and theoretical studies. Karger, Basel, pp. 61–76Google Scholar
  29. Gross JF, Secomb TW (1990) Rheological behaviour of blood during ischemia. In: Strano A, Novo S (eds.) Advances in vascular pathology. Elsevier, Amsterdam, pp. 217–222Google Scholar
  30. Henriksen O, Paaske WP (1980) Local regulation of blood flow in peripheral tissue. Acta Chir Scand 502:63–74Google Scholar
  31. Hjortdal VE, Sinclair T, Kerrigan CL, Solymoss S (1994) Arterial ischemia in skin flaps: micro circulatory intravascular thrombosis. Plast Reconstr Surg 93:375–385PubMedCrossRefGoogle Scholar
  32. Jacobs MJ, Ubbink DT, Kitslaar PJ, Tordoir JH, Slaaf DW, Reneman RS (1992) Assessment of the microcirculation provides additional information in critical limb ischaemia. Eur J Vasc Surg 6:135–141PubMedCrossRefGoogle Scholar
  33. Jelnes R, Tonnesen KH (1984) Nocturnal foot blood flow in patients with arterial insufficiency. Clin Sci 67:89–95PubMedGoogle Scholar
  34. Jelnes R, Bülow J, Tonnesen KH, Lassen NA, Holstein P (1988) The cause of ischaemic nocturnal rest pain. Eur J Vasc Surg 2:31–33PubMedCrossRefGoogle Scholar
  35. Jepsen H, Gaehtgens P (1995) Postural vasacular response versus sympathetic vasoconstriction in human skin during orthostasis. Am J Physiol 269:H53–H61PubMedGoogle Scholar
  36. Jünger M, Frey-Schewlin G, Bollinger A (1989) Microvascular flow distribution and transcapillary diffusion at the forefoot in patients with peripheral ischemia. Int J Microcirc: Clin Exp 8:3–24Google Scholar
  37. Jünger M, Hahn U, Bort S, Klyscz T, Hahn M, Rassner G (1993) Bedeutung der kutanen MikroZirkulation für die Entstehung von Stauungsdermatosen bei chronischer Veneninsuffizienz (CVI). Wien Med Wochenschr 144:206–221Google Scholar
  38. Karanfilian RG, Lynch TG, Lee BC, Long JB, Hobson RW (1984) The assessment of skin blood flow in peripheral vascular disease by laser Doppler velocimetry. Am Surg 50:641–644PubMedGoogle Scholar
  39. Kiesewetter H, Jung F, Spitzer S, Wenzel E (1989) Die Fließeigenschaften des Blutes und ihre klinische Bedeutung beim arteriellen Gefäßpatienten. Internist 30:420–428PubMedGoogle Scholar
  40. Klitzman B, Johnson PC (1982) Capillary network geometry and red cell disturbances in hamster cremaster muscle. Am J Physiol 242:H211–H219PubMedGoogle Scholar
  41. Lassen NA, Westling H (1969) Blood flow in the low-pressure vascular bed distal to an arterial occlusion. Scand J clin Lab Invest 24:97–100PubMedCrossRefGoogle Scholar
  42. Leu HJ (1994) Mikromorphologische Veränderungen in der Haut bei der primären und sekundären (postthrombotischen) chronisch-venösen Insuffizienz. Wien Med Wochenschr 144:201–204PubMedGoogle Scholar
  43. Ley K, Pries AR, Gaehtgens P (1988) Preferential distribution of leukocytes in rat mesentery microvessel networks. Pflügers Arch Europ J Physiol 412:93–100Google Scholar
  44. Lowe G (1990) Pathophysiology of critical leg ischemia. In: Dormandy JA, Stock G (eds.) Critical leg ischemia—Its pathophysiology and management. Springer, Berlin Heidelberg New York Tokyo, pp 17–38CrossRefGoogle Scholar
  45. Mazzoni MC, Cragoe EJ, Arfors KE (1994) Systemic blood acidosis in low-flow ischemia induces capillary luminal nar-rowing. Int J Microcirc Clin Exp 14:144–150PubMedCrossRefGoogle Scholar
  46. McDonagh PF (1993) The microvascular pathophysiology of chronic venous insufficiency. Yale J Biol Med 66:27–36PubMedGoogle Scholar
  47. Menger MD, Meßmer K (1993) Die Mikrozirkulation des Skelettmuskels nach Ischämie und Reperfusion. Wiener Med Wochenschr 143:148–158Google Scholar
  48. Neumann FJ, Waas W, Diehm C, Weiss T, Haupt HM, Zimmermann R, Tillmanns H, Kübler W (1990) Activation and decreased deformability of neutrophils after intermittent claudication. Circulation 82:922–929PubMedCrossRefGoogle Scholar
  49. Potter RF, Groom AC (1983) Capillary diameter and geometry in cardiac and skeletal muscle studied by means of corrosion casts. Microvasc Res 25:68–84PubMedCrossRefGoogle Scholar
  50. Pries AR, Ley K, Gaehtgens P (1986) Generalization of the Fahraeus principle for microvessel networks. Am J Physiol 251:H1324–H1332PubMedGoogle Scholar
  51. Reinke W, Gaehtgens P, Johnson PC (1987) Blood viscosity in small tubes: effect of shear rate, aggregation, and sedimen-tation. Am J Phjysiol 253:H540–H547Google Scholar
  52. Reneman RS, Slaaf DW, Lindbom L, Tangelder GJ, Arfors KE (1980) Muscle blood flow disturbances produced by simul-taneously elevated venous and total muscle tissue pressure. Microvasc Res 20:307–318PubMedCrossRefGoogle Scholar
  53. Rieger H, Biester C, Buchhaas U, Schröder C (1980) Vorläufige Ergebnisse einer Feldstudie über das Verhalten rheologischer Parameter bei Patienten mit artieller Verschlußkrankheit und klinisch gesunden Kontrollpersonen unter Berücksichtigung verschieden kombinierter Risikofaktoren. In: Müller-Wiefel H (Hrsg) Mikrozirkulation und Blutrheologie. Witzstrock, Baden-Baden, S 54–59Google Scholar
  54. Scheffler A, Rieger H (1992) Spontaneous oscillations of laser Doppler skin blood flux in peripheral arterial occlusive disease. Int J Microcirc Clin Exp 1:249–261Google Scholar
  55. Scheffler A, Rieger H (1995) Topographical evaluation of skin perfusion patterns in peripheral arterial occlusive disease by means of computer-assisted fluorescein perfusography. Eur J Vasc Endovasc Surg 10:60–68PubMedCrossRefGoogle Scholar
  56. Scheffler A, Bold M, Linke U, Rieger H (1991a) Skin perfusion patterns during reactive hyperaemia in peripheral arterial occlusive disease. Clin Physiol 11:501–512PubMedCrossRefGoogle Scholar
  57. Scheffler A, Steinbach U, Rieger H (1991b) Effects of ischemia-related suspension media and pore size on erythrocyte filterability in peripheral arterial occlusive disease. Clin Hemorheol 11:479–495Google Scholar
  58. Scheffler A, Jendryssek H, Rieger H (1992) Redistribution of skin blood flow during leg dependency in peripheral arterial occlusive disease. Clin Physiol 12:425–438PubMedCrossRefGoogle Scholar
  59. Schmid-Schönbein GW (1987) Capillary plugging by granulocytes and the no-reflow phenomenon in the microcirculation. Federation Proc 46:2397–2401Google Scholar
  60. Schmid-Schönbein GW, Usami S, Skalak R, Chiens S (1980a) The interaction of leukocytes and erythrocytes in capillary and postcapillary vessels. Microvasc Res. 19:45–70PubMedCrossRefGoogle Scholar
  61. Schmid-Schönbein H, Gaehtgens P, Hirsch H (1968) On the shear rate dependence of red cell aggregation in vitro. J Clin Invest 47:1447–1454PubMedCrossRefGoogle Scholar
  62. Schmid-Schönbein H (1976) Critical closing pressure or yield shear stress as the cause of disturbed peripheral circula-tion? Acta Chir Scand Suppl 465:10–19PubMedGoogle Scholar
  63. Schmid-Schönbein H, Rieger H, Fischer T (1980b) Blood fluidity as a consequence of red cell fluidity: Flow properties of blood and flow behavior of blood in vascular diseases. Angiology 31:301–319CrossRefGoogle Scholar
  64. Seifert H, Jäger K, Bollinger A (1988) Analysis of flow motion by the laser Doppler technique in patients with peripheral arterial occlusive disease. Int J Microcirc: Clin Exp 7:223–236Google Scholar
  65. Slaaf DW, Tangelder GJ, Teirlinck HG, Oude Vrielink HE, Reneman RS (1986) Flow cessation pressures in the rabbit tenuissimus muscle. Int J Microcirc Clin Exp 5:3–9PubMedGoogle Scholar
  66. Slaaf DW, Tangelder GJ, Teirlinck HR, Reneman RS (1987) Arteriolar vasomotion and arterial pressure reduction in rabbit tenuissimus muscle. Microvasc Res 33:71:80PubMedCrossRefGoogle Scholar
  67. Springer TA (1990) Adhesion receptors of the immune system. Nature 346:42–434CrossRefGoogle Scholar
  68. Ubbink DT, Jacobs MJ, Slaaf DW, Tangelder GJ, Reneman RS (1992a) Capillary recruitment and pain relief on leg depen-dency in patients with severe lower limb ischemia. Circulation 85:223–229PubMedCrossRefGoogle Scholar
  69. Ubbink DT, Kitslaar PJ, Tordoir JH, Tangelder GJ, Reneman RS, Jacobs MJ (1992b) The relevance of posturally induced microvascular constriction after revascularization in patients with chronic leg ischemia. Eur J Vasc Surg 6:525–532PubMedCrossRefGoogle Scholar
  70. Vetterlein F, Pethö A, Schmidt G (1986) Distribution of capillary blood flow in rat kidney during postischemic renal failure. Am J Physiol 251:H510–H519PubMedGoogle Scholar
  71. Wieczorek I, Kruse HJ, Creutzig A (1997) Zur Physiologie und Pathophysiologie des Endothelinsystems bei kardiovasku-lären Erkrankungen. VASA 26:173–179PubMedGoogle Scholar
  72. Zweifach BW (1974) Quantitative studies of microcirculatory structure and function. Circ Res 34:843–866PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • P. Gaehtgens
  • A. Scheffler

There are no affiliations available

Personalised recommendations