Skip to main content

Pathophysiologie der Mikrozirkulation bei arteriellen und venösen Durchblutungsstörungen

  • Chapter
Klinische Angiologie
  • 145 Accesses

Zusammenfassung

Die Differenzierung des in sich geschlossenen Kreislaufsystems in eine „Makro“- und eine „Mikrostrombahn“ birgt aus physiologischer Sicht eine gewisse Willkür in sich, da parallel zu der zunehmenden Gefäßminiaturisierung ein kontinuierlicher und nicht etwa ein abrupter Funktionswandel zu beobachten ist. So entwickelt sich aus einem relativ überschaubaren Baum der großen arteriellen Transportgefäße allmählich ein heterogenes Gefäßnetzwerk mit arteriolären Verteilungs- und kapillären Austauschaufgaben, das über venoläre Sammelgefäße in das venöse Volumenreservoir und Rücktransportsystem übergeht. Einige Krankheitsbilder sind auch dadurch gekennzeichnet, daß das Kreislaufsystem als Einheit reagiert (z.B. kardiogener oder anaphylaktischer Schock). Darüber hinaus können sich beispielsweise Perfusionsverteilungsstörungen entlang einer Extremität auf der Grundlage sehr ähnlicher Mechanismen auf verschiedenen Ebenen der zu- und abführenden Gefäße entwickeln.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 349.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Agerskov K, Henriksen O, Tonnesen KH, Lassen NA (1981) Constriction of collateral arteries induced by „head-up tilt“ in patients with occlusive arterial disease of the legs. Cardiovasc Res 15:675–679

    Article  PubMed  CAS  Google Scholar 

  • Allwood MJ (1962) Redistribution of blood flow in limbs with obstruction of a main artery. Clin Sci 22:279–286

    PubMed  CAS  Google Scholar 

  • Alonso C, Pries AR, Gaehtgens P (1989) Time-dependent rheological behaviour of blood flow at low shear in narrow horizontal tubes. Biorheology 26:229–246

    PubMed  CAS  Google Scholar 

  • Belch JJ (1990) The role of the white blood cell in arterial disease. Blood Coagul Fibrinolysis 1:183–191

    PubMed  CAS  Google Scholar 

  • Bollinger A, Fagrell B (1990) Clinical capillaroscopy. Hogrefe & Huber, Stuttgart

    Google Scholar 

  • Bollinger A, Barras JP, Mahler F (1976) Measurement of foot artery blood pressure by micromanometry in normal subjects and in patients with arterial occlusive disease. Circulation 53:506–512

    Article  PubMed  CAS  Google Scholar 

  • Bongard O, Fagrell B (1990) Discrepancies between total and nutritional skin micro circulation in patients with peripheral arterial occlusive disease (PAOD). Vasa 19:105–111

    PubMed  CAS  Google Scholar 

  • Caspary L, Thum J, Pietzsch R, Creutzig A, Alexander A (1991) Reflexionsspektrophotometrische Bestimmung der kutanen Hämoglobinsättigung bei AVK-Patienten. Vasa (Suppl) 33:275–277

    CAS  Google Scholar 

  • Creutzig A, Caspary L (1994) MikroZirkulationsstörungen der Haut. Internist 35:546–556

    PubMed  CAS  Google Scholar 

  • Creutzig A, Caspary L, Alexander K (1991) Skin surface oxygen pressure in healthy volunteers and patients with arterial occlusive disease. Int J Microcirc Clin Exp 10:231–240

    PubMed  CAS  Google Scholar 

  • Damon DH, Duling BR (1985) Evidence that capillary perfusion heterogeneity is not controlled in striated muscle. Am J Physiol 246:H386–H392

    Google Scholar 

  • Ehrly AM, Schroeder W (1979) Zur Pathophysiologie der chronischen arteriellen Verschlußerkrankung. I. Mikrozir-kulatorische Blutverteilungsstörung in der Skelettmuskulatur. Herz/Kreisl 11:275–281

    Google Scholar 

  • Eickhoff JH (1986) Local regulation of subcutaneous blood flow and capillary filtration in limbs with occlusive arterial disease. Dan Med Bul 33:111–126

    CAS  Google Scholar 

  • Eickhoff JH, Henriksen O (1985) Local regulation of subcutaneous forefoot blood flow during orthostatic changes in normal subjects, in sympathetically denervated patients and in patients with occlusive arterial disease. Cardiovasc Res 19:219–227

    Article  PubMed  CAS  Google Scholar 

  • Engler RL, Schmid-Schönbein GW, Pavelec RS (1983) Leukocyte capillary plugging in myocardial ischemia and reperfusion in the dog. Am J Pathol 111:98–111

    PubMed  CAS  Google Scholar 

  • Fahraeus R (1928) Die Strömungsverhältnisse und die Verteilung der Blutzellen im Gefäßsystem. Zur Frage der Bedeutung der Erythrozytenaggregation. Klin Wochenschr 7:100–106

    Article  Google Scholar 

  • Fenton BM, Carr RT, Cokelet GR (1985) Nonuniform red cell distribution in 20–100 micron bifurcations. Microvasc Res 29:103–128

    Article  PubMed  CAS  Google Scholar 

  • Folkow B (1967) Pathophysiological aspects of blood flow distal to an obliterated main artery with special regard to the possibilities of affecting the collateral resistance and the arterioles in the distal low-pressure system. Scand J Clin Lab Invest suppl 99:211–218

    PubMed  CAS  Google Scholar 

  • Franzeck UK, Bollinger A, Huch R, Huch A (1984) Transcutaneous oxygen tension and capillary morphologic characteristics and density in patients with chronic venous insufficiency. Circulation 70:806–811

    Article  PubMed  CAS  Google Scholar 

  • Franzeck UK, Haselbach P, Speiser D, Bollinger A (1993) Microangiopathy of cutaneous blood and lymphatic capillaries in chronic venous insufficiency (CVI). Yale J Biol Med 66:37–46

    PubMed  CAS  Google Scholar 

  • Gaehtgens P (1987) Tube flow of human blood at near zero shear. Biorheology 24:367–376

    PubMed  CAS  Google Scholar 

  • Gaehtgens P, Benner KU, Schickendantz S (1976) Nutritive and non-nutritive blood flow in canine skeletal muscle after partial microembolization. Pflügers Arch 361:183–189

    Article  PubMed  CAS  Google Scholar 

  • Gaehtgens P, Ley K, Pries AR, Müller R (1985) Mutual interaction between leukocytes and microvascular blood flow. Progr Appl Microcirc 7:15–18

    Google Scholar 

  • Göbel R, Perkkiö J, Schmid-Schönbein H (1987) Compaction stasis due to gravitational red cell migration and floatational plasma skimming: reversal of the Fahraeus effect due to pathological RCA-formation in plastic tubes and mesenteric venules. Verh Ges Mikrozirk, pp. 213-220

    Google Scholar 

  • Goldsmith HL, Spain S (1984) Margination of leukocytes in blood flow through small tubes. Microvasc Res 27:204–222

    Article  PubMed  CAS  Google Scholar 

  • Goldsmith HL, Cokelet GR, Gaehtgens P (1989) Robin Fahraeus: evolution of his concepts in cardiovascular physiology. Am J Physiol 257:H1005–H1015

    PubMed  CAS  Google Scholar 

  • Groom AC, Ellis CG, Potter RF (1984) Microvascular architecture and red cell perfusion in skeletal muscle. Prog Appl Microci 5:64–83

    Google Scholar 

  • Groom AC, Ellis CG, Wrigley SM, Potter RF (1986) Architecture and flow patterns in capillary networks of skeletal muscle in frog and rat. In: Popel AS, Johnson PC (eds.) Microvascular networks: experimental and theoretical studies. Karger, Basel, pp. 61–76

    Google Scholar 

  • Gross JF, Secomb TW (1990) Rheological behaviour of blood during ischemia. In: Strano A, Novo S (eds.) Advances in vascular pathology. Elsevier, Amsterdam, pp. 217–222

    Google Scholar 

  • Henriksen O, Paaske WP (1980) Local regulation of blood flow in peripheral tissue. Acta Chir Scand 502:63–74

    CAS  Google Scholar 

  • Hjortdal VE, Sinclair T, Kerrigan CL, Solymoss S (1994) Arterial ischemia in skin flaps: micro circulatory intravascular thrombosis. Plast Reconstr Surg 93:375–385

    Article  PubMed  CAS  Google Scholar 

  • Jacobs MJ, Ubbink DT, Kitslaar PJ, Tordoir JH, Slaaf DW, Reneman RS (1992) Assessment of the microcirculation provides additional information in critical limb ischaemia. Eur J Vasc Surg 6:135–141

    Article  PubMed  CAS  Google Scholar 

  • Jelnes R, Tonnesen KH (1984) Nocturnal foot blood flow in patients with arterial insufficiency. Clin Sci 67:89–95

    PubMed  CAS  Google Scholar 

  • Jelnes R, Bülow J, Tonnesen KH, Lassen NA, Holstein P (1988) The cause of ischaemic nocturnal rest pain. Eur J Vasc Surg 2:31–33

    Article  PubMed  CAS  Google Scholar 

  • Jepsen H, Gaehtgens P (1995) Postural vasacular response versus sympathetic vasoconstriction in human skin during orthostasis. Am J Physiol 269:H53–H61

    PubMed  CAS  Google Scholar 

  • Jünger M, Frey-Schewlin G, Bollinger A (1989) Microvascular flow distribution and transcapillary diffusion at the forefoot in patients with peripheral ischemia. Int J Microcirc: Clin Exp 8:3–24

    Google Scholar 

  • Jünger M, Hahn U, Bort S, Klyscz T, Hahn M, Rassner G (1993) Bedeutung der kutanen MikroZirkulation für die Entstehung von Stauungsdermatosen bei chronischer Veneninsuffizienz (CVI). Wien Med Wochenschr 144:206–221

    Google Scholar 

  • Karanfilian RG, Lynch TG, Lee BC, Long JB, Hobson RW (1984) The assessment of skin blood flow in peripheral vascular disease by laser Doppler velocimetry. Am Surg 50:641–644

    PubMed  CAS  Google Scholar 

  • Kiesewetter H, Jung F, Spitzer S, Wenzel E (1989) Die Fließeigenschaften des Blutes und ihre klinische Bedeutung beim arteriellen Gefäßpatienten. Internist 30:420–428

    PubMed  CAS  Google Scholar 

  • Klitzman B, Johnson PC (1982) Capillary network geometry and red cell disturbances in hamster cremaster muscle. Am J Physiol 242:H211–H219

    PubMed  CAS  Google Scholar 

  • Lassen NA, Westling H (1969) Blood flow in the low-pressure vascular bed distal to an arterial occlusion. Scand J clin Lab Invest 24:97–100

    Article  PubMed  CAS  Google Scholar 

  • Leu HJ (1994) Mikromorphologische Veränderungen in der Haut bei der primären und sekundären (postthrombotischen) chronisch-venösen Insuffizienz. Wien Med Wochenschr 144:201–204

    PubMed  CAS  Google Scholar 

  • Ley K, Pries AR, Gaehtgens P (1988) Preferential distribution of leukocytes in rat mesentery microvessel networks. Pflügers Arch Europ J Physiol 412:93–100

    CAS  Google Scholar 

  • Lowe G (1990) Pathophysiology of critical leg ischemia. In: Dormandy JA, Stock G (eds.) Critical leg ischemia—Its pathophysiology and management. Springer, Berlin Heidelberg New York Tokyo, pp 17–38

    Chapter  Google Scholar 

  • Mazzoni MC, Cragoe EJ, Arfors KE (1994) Systemic blood acidosis in low-flow ischemia induces capillary luminal nar-rowing. Int J Microcirc Clin Exp 14:144–150

    Article  PubMed  CAS  Google Scholar 

  • McDonagh PF (1993) The microvascular pathophysiology of chronic venous insufficiency. Yale J Biol Med 66:27–36

    PubMed  CAS  Google Scholar 

  • Menger MD, Meßmer K (1993) Die Mikrozirkulation des Skelettmuskels nach Ischämie und Reperfusion. Wiener Med Wochenschr 143:148–158

    CAS  Google Scholar 

  • Neumann FJ, Waas W, Diehm C, Weiss T, Haupt HM, Zimmermann R, Tillmanns H, Kübler W (1990) Activation and decreased deformability of neutrophils after intermittent claudication. Circulation 82:922–929

    Article  PubMed  CAS  Google Scholar 

  • Potter RF, Groom AC (1983) Capillary diameter and geometry in cardiac and skeletal muscle studied by means of corrosion casts. Microvasc Res 25:68–84

    Article  PubMed  CAS  Google Scholar 

  • Pries AR, Ley K, Gaehtgens P (1986) Generalization of the Fahraeus principle for microvessel networks. Am J Physiol 251:H1324–H1332

    PubMed  CAS  Google Scholar 

  • Reinke W, Gaehtgens P, Johnson PC (1987) Blood viscosity in small tubes: effect of shear rate, aggregation, and sedimen-tation. Am J Phjysiol 253:H540–H547

    CAS  Google Scholar 

  • Reneman RS, Slaaf DW, Lindbom L, Tangelder GJ, Arfors KE (1980) Muscle blood flow disturbances produced by simul-taneously elevated venous and total muscle tissue pressure. Microvasc Res 20:307–318

    Article  PubMed  CAS  Google Scholar 

  • Rieger H, Biester C, Buchhaas U, Schröder C (1980) Vorläufige Ergebnisse einer Feldstudie über das Verhalten rheologischer Parameter bei Patienten mit artieller Verschlußkrankheit und klinisch gesunden Kontrollpersonen unter Berücksichtigung verschieden kombinierter Risikofaktoren. In: Müller-Wiefel H (Hrsg) Mikrozirkulation und Blutrheologie. Witzstrock, Baden-Baden, S 54–59

    Google Scholar 

  • Scheffler A, Rieger H (1992) Spontaneous oscillations of laser Doppler skin blood flux in peripheral arterial occlusive disease. Int J Microcirc Clin Exp 1:249–261

    Google Scholar 

  • Scheffler A, Rieger H (1995) Topographical evaluation of skin perfusion patterns in peripheral arterial occlusive disease by means of computer-assisted fluorescein perfusography. Eur J Vasc Endovasc Surg 10:60–68

    Article  PubMed  CAS  Google Scholar 

  • Scheffler A, Bold M, Linke U, Rieger H (1991a) Skin perfusion patterns during reactive hyperaemia in peripheral arterial occlusive disease. Clin Physiol 11:501–512

    Article  PubMed  CAS  Google Scholar 

  • Scheffler A, Steinbach U, Rieger H (1991b) Effects of ischemia-related suspension media and pore size on erythrocyte filterability in peripheral arterial occlusive disease. Clin Hemorheol 11:479–495

    Google Scholar 

  • Scheffler A, Jendryssek H, Rieger H (1992) Redistribution of skin blood flow during leg dependency in peripheral arterial occlusive disease. Clin Physiol 12:425–438

    Article  PubMed  CAS  Google Scholar 

  • Schmid-Schönbein GW (1987) Capillary plugging by granulocytes and the no-reflow phenomenon in the microcirculation. Federation Proc 46:2397–2401

    Google Scholar 

  • Schmid-Schönbein GW, Usami S, Skalak R, Chiens S (1980a) The interaction of leukocytes and erythrocytes in capillary and postcapillary vessels. Microvasc Res. 19:45–70

    Article  PubMed  Google Scholar 

  • Schmid-Schönbein H, Gaehtgens P, Hirsch H (1968) On the shear rate dependence of red cell aggregation in vitro. J Clin Invest 47:1447–1454

    Article  PubMed  Google Scholar 

  • Schmid-Schönbein H (1976) Critical closing pressure or yield shear stress as the cause of disturbed peripheral circula-tion? Acta Chir Scand Suppl 465:10–19

    PubMed  Google Scholar 

  • Schmid-Schönbein H, Rieger H, Fischer T (1980b) Blood fluidity as a consequence of red cell fluidity: Flow properties of blood and flow behavior of blood in vascular diseases. Angiology 31:301–319

    Article  Google Scholar 

  • Seifert H, Jäger K, Bollinger A (1988) Analysis of flow motion by the laser Doppler technique in patients with peripheral arterial occlusive disease. Int J Microcirc: Clin Exp 7:223–236

    CAS  Google Scholar 

  • Slaaf DW, Tangelder GJ, Teirlinck HG, Oude Vrielink HE, Reneman RS (1986) Flow cessation pressures in the rabbit tenuissimus muscle. Int J Microcirc Clin Exp 5:3–9

    PubMed  CAS  Google Scholar 

  • Slaaf DW, Tangelder GJ, Teirlinck HR, Reneman RS (1987) Arteriolar vasomotion and arterial pressure reduction in rabbit tenuissimus muscle. Microvasc Res 33:71:80

    Article  PubMed  CAS  Google Scholar 

  • Springer TA (1990) Adhesion receptors of the immune system. Nature 346:42–434

    Article  Google Scholar 

  • Ubbink DT, Jacobs MJ, Slaaf DW, Tangelder GJ, Reneman RS (1992a) Capillary recruitment and pain relief on leg depen-dency in patients with severe lower limb ischemia. Circulation 85:223–229

    Article  PubMed  CAS  Google Scholar 

  • Ubbink DT, Kitslaar PJ, Tordoir JH, Tangelder GJ, Reneman RS, Jacobs MJ (1992b) The relevance of posturally induced microvascular constriction after revascularization in patients with chronic leg ischemia. Eur J Vasc Surg 6:525–532

    Article  PubMed  CAS  Google Scholar 

  • Vetterlein F, Pethö A, Schmidt G (1986) Distribution of capillary blood flow in rat kidney during postischemic renal failure. Am J Physiol 251:H510–H519

    PubMed  CAS  Google Scholar 

  • Wieczorek I, Kruse HJ, Creutzig A (1997) Zur Physiologie und Pathophysiologie des Endothelinsystems bei kardiovasku-lären Erkrankungen. VASA 26:173–179

    PubMed  CAS  Google Scholar 

  • Zweifach BW (1974) Quantitative studies of microcirculatory structure and function. Circ Res 34:843–866

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gaehtgens, P., Scheffler, A. (1998). Pathophysiologie der Mikrozirkulation bei arteriellen und venösen Durchblutungsstörungen. In: Rieger, H., Schoop, W. (eds) Klinische Angiologie. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-08104-4_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-08104-4_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-08105-1

  • Online ISBN: 978-3-662-08104-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics