Skip to main content

Mechanisms of ischemic mitral insufficiency and their surgical correction

  • Conference paper

Abstract

The function of the mitral valve is dependent on the precise interaction of cusps, chordae, ventricular base, and the posterior ventricular wall. For closure to take place with or without atrial contraction, a vortex forms behind the anterior cusp and moves it posteriorly, and the ventricular muscle starts to develop tension. With this the ventricular pressure rises, reversing the diastolic forward flow of blood through the orifice. Closure occurs after systole has started, just before the aortic valve opens. The normal annulus narrows, bringing the posterior cusp nearer to the anterior cusp and the posterior left ventricular wall shortens allowing the cusps to rise to the plane of the atrioventricular ring. A small puff of regurgitation occurs as the cusps close. Most of this is blood displaced by the cusps as their contact progresses from a touching of the free edges to contact over a substantial area [2, 3].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Carpentier A (1988) Personal communication

    Google Scholar 

  2. Frater RWM (1961) Mitral valve anatomy and prosthetic valve design. Proc staff meet. Mayo Clin Proc 36:23

    Google Scholar 

  3. Frater RWM (1986) Functional anatomy of the mitral valve. In: Ionescu M, Cohn L (eds) But-terworths 8:123–134

    Google Scholar 

  4. Frater RWM, Gabbay S, Shore S, Factor S, Strom J (1983) Reproducible replacement of elongated or ruptured mitral valve chordae. Ann Thorac Surg 35(l):14–28

    Article  PubMed  CAS  Google Scholar 

  5. Godley RW, Wann LS, Rogers EW, Feigenbaum H, Weyman AE (1981) Incomplete mitral leaflet closure in patients with papillary muscle dysfunction. Circulation 63:565–571

    Article  PubMed  CAS  Google Scholar 

  6. Hagl S, Heimisch W, Meister H, Mendier N, Sebening F (1984) In situ function of the papillary muscle in the canine left ventricle. In: Duran C, Angen WA, Johnson AD, Oury JM (eds) Recent progress in mitral valve disease. Butterworths, London, p 397–409

    Google Scholar 

  7. Izumi S, Miyatake K, Beppu S, Park YD, Nagata S, Kinoshita N, Sakakibara H, Nimura Y (1987) Mechanism of mitral regurgitation in patients with myocardial infarction: a study using real-time two-dimensional Doppler flow imaging and echocardiography. Circulation 76:777–785

    Article  PubMed  CAS  Google Scholar 

  8. Kay JM, Zubiate P, Mendez MA, Vanstrom N, Yokoyama T, Gharari MA (1980) Surgical treatment of mitral insufficiency secondary to coronary artery disease. J Thorac Cardiovasc Surg 79:12

    PubMed  CAS  Google Scholar 

  9. McAlpine WA (1975) Heart and coronary arteries. Springer, Berlin Heidelberg New York

    Book  Google Scholar 

  10. Miller GE Jr, Cohn KE, Kerth WF, Selzer A, Gerbode F (1968) Experimental papillary muscle infarction. J Thorac Cardiovasc Surg 56:611–616

    PubMed  Google Scholar 

  11. Tei C, Sakamake T, Shah PM, Meerbaum S, Kondo S, Shimoura K, Corday E (1983) Mitral valve prolapse in short-term experimental coronary occlusion: a possible mechanism of ischemic mitral regurgitation. Circulation 68:183–189

    Article  PubMed  CAS  Google Scholar 

  12. Yellin EL, Yoran C, Sonnenblick EH, Gabbay S, Frater RWM (1979) Dynamic changes in the canine mitral regurgitant orifice area during ventricular ejection. Circ Res 45:667–683

    Article  Google Scholar 

  13. Yoran C, Yellin EL, Becker RM, Gabbay S, Frater RWM (1979) Mechanism for reduction of mitral regurgitation with vasodilator therapy. Am J Cardiol 43:773–777

    Article  PubMed  CAS  Google Scholar 

  14. Yoran C, Yellin EL, Becker RM, Gabbay S, Frater RWM (1979) Dynamic aspects of mitral regurgitation: effects of ventricular volume, pressure and contractility on the effective regurgitation orifice area. Circulation 60:170–176

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Frater, R.W.M., Cornelissen, P., Sisto, D. (1991). Mechanisms of ischemic mitral insufficiency and their surgical correction. In: Vetter, H.O., Hetzer, R., Schmutzler, H. (eds) Ischemic Mitral Incompetence. Steinkopff, Heidelberg. https://doi.org/10.1007/978-3-662-08027-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-08027-6_10

  • Publisher Name: Steinkopff, Heidelberg

  • Print ISBN: 978-3-662-08029-0

  • Online ISBN: 978-3-662-08027-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics