Iron—Cobalt Fe—Co

  • Ortrud Kubaschewski von Goldbeck


The system is characterized by an extensive solid solution range between fcc γ(Fe) and fcc γ(Co) and a wide α-Fe solid solution region which transforms via a second order reaction into the ordered CsCl type phase FeCo. Two additional ordered phases near 28 and 74 at.% Co, found by electrical resistivity measurements only (Viting [1]), could not be detected by any other method. (He may have measured the second order A2/B2 transition which appears possible considering the phase diagram in Fig. 13). Since the publication of the Fe-Co system by Hansen [A], the more recent investigations concentrated mainly on the clarification of second order reaction (A2/B2 and magnetic transformations) as well as the low temperatures Co-rich region.


Curie Temperature Electrical Resistivity Measurement Second Order Reaction FeCo Alloy Magnetic Transformation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Viting, L.M.: Zh. Neorg. Khim. 2 (1957) 845Google Scholar
  2. 2.
    Predel, B.; Mohs, R.: Arch. Eisenhüttenwes. 41 (1970) 143Google Scholar
  3. 3.
    Masumoto, H.; Watanabe, K.: J. Jpn. Inst. Met. 42 (1978) 256Google Scholar
  4. 4.
    Masumoto, H.: Sci. Rep. Tohoku Univ. 15 (1926) 469, Trans. ASST 10 (1926) 491Google Scholar
  5. 5.
    Hashimoto, U.: Nippon Kinzoku Gakkaishi 1 (1937) 177Google Scholar
  6. 6.
    Ishida, K.; Nishizawa, T.: Trans. Jpn. Inst. Met. 15 (1974) 225Google Scholar
  7. 7.
    Harris, G.B.; Hume-Rothery, W.: J. Iron Steel Inst. 174 (1953) 212Google Scholar
  8. 8.
    Fischer, W.A.; Lorenz, K.; Fabritius, H.; Schlegel, D.: Arch. Eisenhüttenwes. 41 (1970) 489Google Scholar
  9. 9.
    Ellis, W.C.; Greiner, E.S.: Trans. ASM 29 (1941) 415Google Scholar
  10. 10.
    Normanton, A.S.; Bloomfield, P.E.; Sale, F.R.; Argent, B.B.: Met. Sci. J. 9 (1975) 510CrossRefGoogle Scholar
  11. 11.
    Oyedele, J.A.: McMaster Univ. Diss. Abstr. Int., Mar. (1979) 39 (9)Google Scholar
  12. 12.
    Castanet, R.; Ferrier, A.: Compt. Rendus C 277 (1971) 15Google Scholar
  13. 13.
    Orehotsky, J.; Schröder, K.: J. Phys. F: Met. Phys. 4 (1974) 196CrossRefGoogle Scholar
  14. 14.
    Seehra, M.S.; Silinsky, P.: Phys. Rev. B 13 (1976) 5183CrossRefGoogle Scholar
  15. 15.
    Inden, G.: Z. Metallkd. 68 (1977) 529Google Scholar
  16. 16.
    Kuroki, H.; Matsuda, H.; Eguchi, T.: Trans. Jpn. Inst. Met. 19 (1978) 211Google Scholar
  17. 17.
    Matsuda, H.; Kuroki, H.; Eguchi, T.: J. Jpn. Inst. Met. 35 (1971) 774Google Scholar
  18. 18.
    Matsuda, H.; Kuroki, H.; Eguchi, T.: Trans. J. Inst. Met. 12 (1971) 390Google Scholar
  19. 19.
    Kaufman, L.; Nesor, H.: Z. Metallkd. 64 (1973) 249Google Scholar
  20. 20.
    Stuart, H.; Ridley, N.: Brit. J. Appl. Phys. 2 (1969) Ser. 2, 485Google Scholar
  21. 21.
    Inden, G.; Meyer, W.O.: Z. Metallkd. 66 (1975) 725Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1982

Authors and Affiliations

  • Ortrud Kubaschewski von Goldbeck
    • 1
  1. 1.Metallurgie der Kernbrennstoffe und Theoretische HüttenkundeRWTH AachenAachenFederal Republic of Germany

Personalised recommendations