Kainate Receptors

  • J. Lerma
Part of the Handbook of Experimental Pharmacology book series (HEP, volume 141)

Abstract

The kainate receptor is a component of the glutamate signaling system that has remained elusive to investigators over the years. The lack of specific pharmacological tools has hampered the detection of these receptors in neurons of the central nervous system (CNS) and the determination of their physiological role. Until the cloning of the subunits that make up the kainate receptors, the evidence of their existence as independent receptors in neurons was weak, and it is only recently that we have become able to define the processes in which these receptors are involved (Lerma 1997). Indeed, in spite of considerable evidence from binding and autoradiographic experiments indicating the existence of high-affinity binding sites for kainate in the brain, with a distribution different from that of a-amino-3-hydroxy-5-methylisoxazole-4propionic-acid (AMPA)-binding sites (Young and Fagg 1990), they were not convincingly detected in brain neurons until more recently (Lerma et al. 1993).

Keywords

Ischemia NMDA Nash Tetrazol Valine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Attwell D, Mobbs P (1994) Neurotransmitter transporters. Curr Op Neurobiol 4: 353–359CrossRefPubMedGoogle Scholar
  2. Bahn S, Volk B, Wisden W (1994) Kainate receptor gene expression in the developing rat brain. J Neurosci 14: 5525–5547PubMedGoogle Scholar
  3. Belcher SM, Howe JR (1997) Characterization of RNA editing of the glutamate-receptor subunits G1uR5 and G1uR6 in granule cells during cerebellar development. Brain Res Mol Brain Res 52: 130–138CrossRefPubMedGoogle Scholar
  4. Benveniste H, Drejer J, Schousboe A, Diemer NH (1984) Elevation of extracellular concentration of glutamate and aspartate in rat hippocampus during transient cerebral ischemia monitored by intracerebral microdialysis. J Neurochem 43: 1369–1374CrossRefPubMedGoogle Scholar
  5. Bernard A, Khrestchatisky M (1994) Assessing the extent of RNA editing in the TMII regions of GluR5 and GluR6 kainate receptors during the rat brain development. J Neurochem 62: 2057–2060CrossRefPubMedGoogle Scholar
  6. Bettler B, Boulier J, Hermans-Borgmeyer I, O’Shea-Greenfield A, Deneris ES, Moll C, Borgmeyer U, Hollmann M, Heinemann S (1990) Cloning of a novel glutamate receptor subunit, GluR5: expression in the nervous system. Neuron 5: 583–595CrossRefPubMedGoogle Scholar
  7. Bettler B, Egebjerg J, Sharma G, Pecht G, Hermans-Borgmeyer I, Moll C, Stevens CF, Heinemann S (1992) Cloning of a putative glutamate receptor: a low affinity kainate-binding subunit. Neuron 8: 257–265CrossRefPubMedGoogle Scholar
  8. Bischoff S, Barhanin J, Bettler B, Mulle C, Heinemann S (1997) Spatial distribution of kainate receptor subunit mRNA in the mouse basal ganglia and ventral mesencephalon. J Comp Neurol 379: 541–562CrossRefPubMedGoogle Scholar
  9. Bleakman D, Ballyk B, Schoepp DD, Palmer AJ, Bath KP, Sharpe E, Wooley ML, Bufton H, Kamboj K, Tarnawa I, Lodge D (1996a) Activity of 2,3-benzodiazepines at native rat and recombinant human glutamate receptors in vitro: stereospecificity and selectivity profiles. Neuropharmacology 35: 1689–1702CrossRefPubMedGoogle Scholar
  10. Bleakman D, Schoepp DD, Ballyk B, Bufton H, Sharpe E, Thomas K, Ornstein PL, Kamboj K (1996b) Pharmacological discrimination of GluR5 and G1uR6 kainate receptor subtypes by (3S,4aR,6R,8aR)-6-[2-(1(2)H-tetrazole-5-yl)ethylldecahydroisdoquinoline-3 carboxylic-acid. Mol Pharmacol 49: 581–585PubMedGoogle Scholar
  11. Carver JM, Mansson PE, Cortes-Burgos L, Zhou LM, Howe JR, Giordano T (1996) Cytotoxic effects of kainate ligands on HEK cell lines expressing recombinant kainate receptors. Brain Res 720: 69–74CrossRefPubMedGoogle Scholar
  12. Castillo PE, Malenka RC, Nicoll RA (1997) Kainate receptors mediate a slow postsynaptic current in hippocampal CA3 neurons. Nature 388: 182–186CrossRefPubMedGoogle Scholar
  13. Cattaneo R (1991) Different types of messenger RNA editing. Annu Rev Genet 25: 71–88CrossRefPubMedGoogle Scholar
  14. Cherubini E, Rovira C, Ben-Ari Y, Nistri A (1990) Effects of kainate on excitability of rat hippocampal neurons. Epilepsy Res 5: 18–27CrossRefPubMedGoogle Scholar
  15. Chettouh Z, Croquette MF, Delobel B, Gilgenkrants S, Leonard C, Maunoury C, Prieur M, Rethore MO, Sinet PM, Chery M, et al (1995) Molecular mapping of 21 features associated with partial monosomy 21: involvement of the APP-SOD1 region. Am J Hum Genet 57: 62–71PubMedGoogle Scholar
  16. Chittajallu R, Vignes M, Dev KK, Barnes JM, Collingridge GL, Henley JM (1996) Regulation of glutamate release by presynaptic kainate receptors in the hippocampus. Nature 379: 78–81CrossRefPubMedGoogle Scholar
  17. Choi DW (1992) Bench to bedside: the glutamate connection. Science 258: 241243Google Scholar
  18. Clarke VRJ, Ballyk BA, Hoo KH, Mandelzys A, Pellizari A, Bath CP, Thomas J, Sharpe EF, Davies, CH, Ornstein PL, Schoepp DD, Kamboj RK, Collingridge GL, Lodge D, Bleakman D (1997) A hippocampal GluR5 kainate receptor regulating inhibitory synaptic transmission. Nature 389: 599–602CrossRefPubMedGoogle Scholar
  19. Cossart R, Esclapez M, Hirsch JC, Bernard C, Ben-Ari Y (1998) G1uR5 kainate receptor activation in interneurons increases tonic inhibition of pyramidal cells. Nature Neurosci 1: 470–478CrossRefPubMedGoogle Scholar
  20. Coyle JT (1983) Neurotoxic actions of kainic acid. J Neurochem 41: 1–11CrossRefPubMedGoogle Scholar
  21. Egebjerg J, Heinemann SF (1993) Ca’ permeability of unedited and edited versions of the kainate selective glutamate receptor G1uR6. Proc Natl Acad Sci USA 90: 755–759CrossRefPubMedGoogle Scholar
  22. Egebjerg J, Bettler B, Hermans-Borgmeyer I, Heinemann S (1991) Cloning of a cDNA for a glutamate receptor subunit activated by kainate but not by AMPA. Nature 351: 745–748CrossRefPubMedGoogle Scholar
  23. Ehlers MD, Mammen AL, Lau LF, Huganir RL (1996) Synaptic targeting of glutamate receptors. Curr Opin Cell Biol 8: 484–489CrossRefPubMedGoogle Scholar
  24. Eubanks JH, Puranm RS, Kleckner NW, Bettler B, Heinemann SF, McNamara JO (1993) The gene encoding the glutamate receptor subunit G1uR5 is located on human chromosome 21821.1–22.1 in the vicinity of the gene for familial amyotrophic lateral sclerosis. Proc Natl Acad Sci USA 90: 178–182CrossRefPubMedGoogle Scholar
  25. Fisher RS, Alger BE (1984) Electrophysiological mechanisms of kainic-acid-induced epileptiform activity in the rat hippocampal slice. J Neurosci 4: 1312–1323PubMedGoogle Scholar
  26. Fleischmann BK, Murray RK, Kotlikoff MI (1994) Voltage window for sustained elevation of cytosolic calcium in smooth muscle cells. Proc Natl Acad Sci USA 91: 11914–11918CrossRefPubMedGoogle Scholar
  27. Frerking M, Malenka RC, Nicoll RA (1998) Synaptic activation of kainate receptors on hippocampal interneurons. Nature Neurosci 1: 479–486CrossRefPubMedGoogle Scholar
  28. Gregor P, Gaston SM, Yang X, O’Regan JP, Rosen DR, Tanzi RE, Patterson D, Haines JL, Horvitz HR, Uhl GR, et al (1994) Genetic and physical mapping of the GLUR5 glutamate receptor gene on human chromosome 21. Hum Genet 94: 565570Google Scholar
  29. Gregor P, Mano I, Maoz I, McKeown M, Teichberg VI (1989) Molecular structure of the chick cerebellar kainate-binding subunit of a putative glutamate receptor. Nature 342: 689–692CrossRefPubMedGoogle Scholar
  30. Heckmann M, Bufler J, Franke C, Dudel J (1996) Kinetics of homomeric G1uR6 glutamate receptor channels. Biophys J 71: 1743–1750CrossRefPubMedGoogle Scholar
  31. Henley JM (1994) Kainate-binding proteins: phylogeny, structures and possible functions. Trends Pharmacol Sci 15: 182–90CrossRefPubMedGoogle Scholar
  32. Herb A, Burnashev N, Werner P, Sakmann B, Wisden W, Seeburg PH (1992). The KA-2 subunit of excitatory amino acid receptors shows widespread expression in brain and forms ion channels with distantly related subunits. Neuron 8: 775–785CrossRefPubMedGoogle Scholar
  33. Hille B (1992) G-protein-coupled mechanisms and nervous signaling. Neuron 9: 187–195CrossRefPubMedGoogle Scholar
  34. Honore T, Davies SN, Drejer J, Fletcher EJ, Jacobsen P, Lodge D, Nielsen FE (1988) Quinoxalinediones: potent competitive non-NMDA glutamate receptor antagonists. Science 241: 701–703CrossRefPubMedGoogle Scholar
  35. Hoo KH, Nutt SL, Fletcher EJ, Elliott CE, Korczak B, Deverill RM, Rampersad V, Fantaske RP, Kamboj RK (1994) Functional expression and pharmacological characterization of the human EAA4 (G1uR6) glutamate receptor: a kainate selective channel subunit. Receptors Channels 2: 327–337PubMedGoogle Scholar
  36. Howe JR (1996) Homomeric and heteromeric ion channels formed from the kainatetype subunits G1uR6 and KA2 have very small, but different, unitary conductances. J Neurophysiol 76: 510–519PubMedGoogle Scholar
  37. Huettner JE (1990) Glutamate receptor channels in DRG neurons-activation by kainate and quisqualate and blockade of desensitization by Con-A. Neuron 5: 255–266CrossRefPubMedGoogle Scholar
  38. Ishimaru H, Kamboj R, Ambrosini A, Henley JM, Soloviev MM, Sudan H, Rossier J, Abutidze K, Rampersad V, Usherwood PN, Bateson AN, Barnard EA (1996) A unitary non-NMDA receptor short subunit from Xenopus: DNA cloning and expression. Receptors Channels 4: 31–49Google Scholar
  39. Johansen TH, Drejer T, Wätjen F, Nielsen EO (1993) A novel non-NMDA receptor antagonist shows selective displacement of low-affinity 3H-kainate binding, Eur J Pharmacol-Mol. Pharmacol Sect 246: 195–204Google Scholar
  40. Jones KA, Wilding TJ, Huettner JE, Costa AM (1997) Desensitization of kainate receptors by kainate, glutamate and diastereisomers of 4-methylglutamate. Neuropharmacology 36: 853–863CrossRefPubMedGoogle Scholar
  41. Kamboj RK, Schoepp DD, Nutt S, Shekter L, Korczak B, True RA, Zimmerman, Wosnick MA (1992) Molecular structure and pharmacological characterization of humEAA2, a novel human kainate receptor subunit. Mol Pharmacol 42: 10–15PubMedGoogle Scholar
  42. Kamboj RK, Schoepp DD, Nutt S, Shekter L, Korczak B, True RA, Rampersad V, Zimmerman DM, Wosnick MA (1994) Molecular cloning, expression, and pharmacological characterization of humEAA1, a human kainate receptor subunit. J Neurochem 62: 1–9CrossRefPubMedGoogle Scholar
  43. Kamiya H, Ozawa S (1998) Kainate receptor-mediated inhibition of presynaptic Ca’ influx and EPSP in area CA1 of the rat hippocampus. J Physiol (Lond) 509: 833–845CrossRefGoogle Scholar
  44. Köhler M, Burnashev N, Sakmann B, Seeburg PH (1993) Determinants of Ca’ permeability in both TM1 and TM2 of high affinity kainate receptor channels: diversity by RNA editing. Neuron 10: 491–500CrossRefPubMedGoogle Scholar
  45. Korczak B, Nutt SL, Fletcher EJ, Hoo KH, Elliott CE, Rampersad V, McWhinnie EA, Kamboj RK (1995) cDNA cloning and functional properties of human glutamate receptor EAA3 (GluR5) in homomeric and heteromeric configuration. Receptors Channels 3: 41–49Google Scholar
  46. Lauridsen J, Honore T, Krogsgaard-Larsen P (1985) Ibotenic acid analogues. Synthesis, molecular flexibility, and in vitro activity of agonists and antagonists at central glutamic acid receptors. J Med Chem 28: 668–672Google Scholar
  47. Lerma J (1997) Kainate reveals its targets. Neuron 19: 1155–1158CrossRefPubMedGoogle Scholar
  48. Lerma J (1998) Kainate receptors: an interplay between excitatory and inhibitory synapses. FEBS Letters 430: 100–104CrossRefPubMedGoogle Scholar
  49. Lerma J, Herranz AS, Herreras O, Abraira V, Martin del Rio R (1986). In vivo determination of extracellular concentration of amino acids in the rat hippocampus. A method based on brain dialysis and computerized analysis. Brain Res 384: 145–155Google Scholar
  50. Lerma J, Morales M, Vicente MA, Herreras 0 (1997) Glutamate receptors of the kainate type and synaptic transmission. Trends in Neurosci 20: 9–12Google Scholar
  51. Lerma J, Paternain AV, Naranjo JR, Mellström B (1993) Functional kainate-selective glutamate receptors in cultured hippocampal neurons. Proc Natl Acad Sci USA 90: 11688–11692CrossRefPubMedGoogle Scholar
  52. Lomeli H, Wisden W, Köhler M, Keinänen K, Sommer B, Seeburg PH (1992) High- affinity kainate and domoate receptors in rat brain. FEBS Lett 307: 139–143CrossRefPubMedGoogle Scholar
  53. Mackler SA, Eberwine JH (1993) Diversity of glutamate receptor subunits mRNA expression within live hippocampal CAl neurons. Mol. Pharmacol 44: 308–315Google Scholar
  54. Matute C, Sanchez-Gomez MV, Martinez-Millan L, Miledi R (1997) Glutamate receptor-mediated toxicity in optic nerve oligodendrocytes. Proc Natl Acad Sci USA 94: 8830–8835CrossRefPubMedGoogle Scholar
  55. Morita T, Sakimura K, Kushiya E, Yamazaki M, Meguro H, Araki K, Abe T, Mori KJ, Mishina M (1992) Cloning and functional expression of a cDNA encoding the mouse beta 2 subunit of the kainate-selective glutamate receptor channel. Brain Res Mol-Brain Res 14: 143–146CrossRefPubMedGoogle Scholar
  56. Mulle C, Sailer A, Perez-Otaflo I, Dickinson-Anson H, Castillo PE, Bureau I, Maron C, Gage FH, Mann JR, Bettler B, Heinemann SF (1998) Altered synaptic physiology and reduced susceptibility to kainate-induced seizures in GluR6-deficient mice. Nature 392: 601–605CrossRefPubMedGoogle Scholar
  57. Nishimune A, Isaac JT, Molnar E, Noel J, Nash SR, Tagaya M, Collingridge GL, Nakanishi S, Henley JM (1998) NSF binding to GluR2 regulates synaptic transmission. Neuron 21: 87–97CrossRefPubMedGoogle Scholar
  58. Nutt SL, Hoo KH, Rampersad V, Deverill RM, Elliott CE, Fletcher EJ, Adams SL, Korczak B, Foldes RL, Kamboj RK (1994) Molecular characterization of the human EAA5 (G1uR7) receptor: a high-affinity kainate receptor with novel potential RNA editing sites. Receptors Channels 2: 315–326PubMedGoogle Scholar
  59. Osten P, Srivastava S, Inman GJ, Vilim FS, Khatri L, Lee LM, States BA, Einheber S, Milner TA, Hanson PI, Ziff EB (1998) The AMPA receptor GluR2 C terminus can mediate a reversible, ATP-dependent interaction with NSF and a-and ß-SNAPs. Neuron 21: 99–110Google Scholar
  60. Paschen W, Blackstone CD, Huganir RL, Ross CA (1994) Human G1uR6 kainate receptor (GRIK2): molecular cloning, expression, polymorphism, and chromosomal assignment. Genomics 20: 435–440CrossRefPubMedGoogle Scholar
  61. Paschen W, Schmitt J, Gissel C, Dux E (1997) Developmental changes of RNA editing of glutamate receptor subunits G1uR5 and GluR6: in vivo versus in vitro. Brain Res Dev Brain Res 98: 271–280CrossRefPubMedGoogle Scholar
  62. Paternain AV, Morales M, Lerma J (1995) Selective antagonism of AMPA receptors unmasks kainate receptor-mediated responses in hippocampal neurons. Neuron 14: 185–189CrossRefPubMedGoogle Scholar
  63. Paternain AV, Rodriguez-Moreno A, Villarroel A, Lerma J (1998) Activation and desensitization properties of native and recombinant kainate receptors. Neuropharmacology 37: 1249–1259CrossRefPubMedGoogle Scholar
  64. Paternain AV, Vicente MA, Nielsen Eo, Lerma J (1996) Comparative antagonism of kainate-activated AMPA and kainate receptors in hippocampal neurons. Eur. J. Neurosci 8: 2129–2136Google Scholar
  65. Patneau DK, Wright PW, Winters C, Mayer ML, Gallo V (1994) Glial cells of the oligodendrocyte lineage express both kainate-and AMPA-preferring subtypes of glutamate receptor. Neuron 12: 357–371CrossRefPubMedGoogle Scholar
  66. Pemberton KE, Belcher SM, Ripellino JA, Howe JR (1998) High-affinity kainate-type ion channels in rat cerebellar granule cells. J Physiol (Lond) 510: 401–420CrossRefGoogle Scholar
  67. Potier MC, Dutriaux A, Lambolez B, Bochet P, Rossier J (1993) Assignment of the human glutamate receptor gene GLUR5 to 21q22 by screening a chromosome 21 YAC library. Genomics 15: 696–697CrossRefPubMedGoogle Scholar
  68. Price CJ, Raymond LA (1996) Evans blue antagonizes both alpha-amino-3-hydroxy5-methyl-4-isoxazolepropionate and kainate receptors and modulates receptor desensitization. Mol Pharmacol 50: 1665–1671PubMedGoogle Scholar
  69. Raymond LA, Blackstone CD, Huganir RL (1993) Phosphorylation and modulation of recombinant GluR6 glutamate receptors by cAMP-dependent protein kinase. Nature 361: 637–641CrossRefPubMedGoogle Scholar
  70. Rodriguez-Moreno A, Lerma J (1998) Kainate receptor modulation of GABA release involves a metabotropic function. Neuron 20: 1211–1218CrossRefPubMedGoogle Scholar
  71. Rodriguez-Moreno A, Herreras O, Lerma J (1997) Kainate receptors presynaptically downregulate GABAergic inhibition in the rat hippocampus. Neuron 19: 893–901CrossRefPubMedGoogle Scholar
  72. Rosenmund C, Stern-Bach Y, Stevens CF (1998) The tetrameric structure of a glutamate receptor channel. Science 280: 1596–1599CrossRefPubMedGoogle Scholar
  73. Ruano D, Lambolez B, Rossier J, Paternain AV, Lerma J (1995) Kainate receptors subunits expressed in single cultured hippocampal neurons: molecular and functional variants by RNA editing. Neuron 14: 1009–1017CrossRefPubMedGoogle Scholar
  74. Sahara Y, Noro N, Iida Y, Soma K, Nakamura Y (1997) Glutamate receptor subunits GluR5 and KA2 are coexpressed in rat trigeminal ganglion neurons. J Neurosci 17: 6611–6620PubMedGoogle Scholar
  75. Sakimura K, Morita T, Kushiya E, Mishina M (1992) Primary structure and expression of the y2 subunit of the glutamate receptor channel selective for kainate. Neuron 8: 267–274CrossRefPubMedGoogle Scholar
  76. Sander T, Hildmann T, Kretz R, Fürst R, Sailer U, Bauer G, Schmitz B, BeckMannagetta G, Wienker T, Janz D (1997) Allelic association of juvenile absence epilepsy with a GluR5 kainate receptor gene (GRIK1) polymorphism. Am. J. Med. Genet. 74: 416 X121Google Scholar
  77. Sander T, Janz D, Ramel C, Ross CA, Paschen W, Hildmann T, Wienker TF, Bianchi A, Bauer G, Sailer U, et al (1995) Refinement of map position of the human GluR6Google Scholar
  78. kainate receptor gene (GRIK2) and lack of association and linkage with idiopathic generalized epilepsies. Neurology 45:1713–1720Google Scholar
  79. Schiffer HH, Swanson GT, Heinemann SF (1997) Rat GluR7 and a carboxy-terminal splice variant, GluR7b, are functional kainate receptor subunits with a low sensitivity to glutamate. Neuron 19: 1141–1146CrossRefPubMedGoogle Scholar
  80. Seeburg PH (1996) The role of RNA editing in controlling glutamate receptor channel properties. J Neurochem 66: 1–5CrossRefPubMedGoogle Scholar
  81. Simmons RM, Li DL, Hoo KH, Deverill M, Ornstein PL, Iyengar S (1998) Kainate GluR5 receptor subtype mediates the nociceptive response to formalin in the rat. Neuropharmacology 37: 25–36CrossRefPubMedGoogle Scholar
  82. Sloviter RS, Damiano BP (1981) On the relationship between kainic acid-induced epileptiform activity and hippocampal neuronal damage. Neuropharmacology 20: 1001–1011CrossRefGoogle Scholar
  83. Smirnov SV, Aaronson PI (1992) Ca’ currents in single myocytes from human mesenteric arteries: evidence for a physiological role of L-type channels. J Physiol (Lond.) 457: 455–475Google Scholar
  84. Sommer B, Burnashev N, Verdoorn TA, Keinänen K, Sakmann B, Seeburg PH (1992) A glutamate receptor channel with high affinity for domoate and kainate. EMBO J 11: 1651–1656PubMedGoogle Scholar
  85. Sommer B, Seeburg PH (1992) Glutamate receptor channels: novel properties and new clones. Trends Pharmacol Sci 13: 291–296CrossRefPubMedGoogle Scholar
  86. Swanson, GT, Heinemann SF (1998) Heterogeneity of homomeric GluR5 kainate receptor desensitization expressed in HEK293 cells. J Physiol (Lond) 15: 639–646CrossRefGoogle Scholar
  87. Swanson GT, Feldmeyer D, Kaneda M, Cull-Candy SG (1996) Effect of RNA editing and subunit co-assembly single-channel properties of recombinant kainate receptors. J Physiol (Lond) 492: 129–142Google Scholar
  88. Swanson GT, Green T, Heinemann SF (1998) Kainate receptors exhibit differential sensitivities to (S)-5-iodowillardiine. Mol Pharmacol 53: 942–949PubMedGoogle Scholar
  89. Swanson GT, Kamboj SK, Cull-Candy SG (1997) Single-channel properties of recombinant AMPA receptors depend on RNA editing, splice variation, and subunit composition. J Neurosci 17: 58–69PubMedGoogle Scholar
  90. Swope SL, Moss SJ, Blackstone CD, Huganir RL (1992) Phosphorylation of ligand-gated ion channels: a possible mode of synaptic plasticity. FASEB J 6: 2514–2523PubMedGoogle Scholar
  91. Traynelis SF, Wahl P (1997) Control of rat G1uR6 glutamate receptor open probability by protein kinase A and calcineurin. J Physiol (Lond) 503: 513–531CrossRefGoogle Scholar
  92. Verdoorn TA, Johansen TH, Drejer J, Nielsen EO (1994), Selective block of recombinant GluR6 receptors by NS-102, a novel non-NMDA receptor antagonist, Eur J Pharmacol (Mol Pharmacol Sect) 269: 43–49CrossRefGoogle Scholar
  93. Vignes M, Bleakman D, Lodge D, Collingridge GL (1997) The synaptic activation of the G1uR5 subtype of kainate receptor in area CA3 of the rat hippocampus. Neuropharmacology 36: 1477–1481CrossRefPubMedGoogle Scholar
  94. Vignes M, Collingridge GL (1997) The synaptic activation of kainate receptors. Nature 388: 179–182CrossRefPubMedGoogle Scholar
  95. Villmann C, Bull L, Hollmann M (1997) Kainate binding proteins possess functional ion channel domains. J Neurosci 17: 7634–7643PubMedGoogle Scholar
  96. Vizi ES, Mike A, Tarnawa I (1996) 2,3-Benzodiazepines (GYKI 52466 and analogs): Negative allosteric modulators of AMPA receptors. CNS Drug Rev. 2: 91–126Google Scholar
  97. Wada K, Dechesne CJ, Shimasaki S, King RG, Kusano K, Buonanno A, Hampson DR, Banner C, Wenthold RJ, Nakatani Y (1989) Sequence and expression of a frog brain complementary DNA encoding a kainate-binding protein. Nature 342: 684–689CrossRefPubMedGoogle Scholar
  98. Wang Y, Small DL, Stanimirovic DB, Morley P, Durkin JP (1997) AMPA receptor- mediated regulation of a Gi-protein protein in cortical neurons. Nature 389: 502–504CrossRefPubMedGoogle Scholar
  99. Wang LY, Taverna FA, Huang XP, MacDonald JF, Hampson DR (1993) Phosphorylation and modulation of a kainate receptor (G1uR6) by cAMP-dependent protein kinase. Science 259: 1173–1175CrossRefPubMedGoogle Scholar
  100. Wenthold RJ, Hampson DR, Wada K, Hunter C, Oberdorfer MD, Dechesne CJ (1990) Isolation, localization, and cloning of a kainic acid binding protein from frog brain. J Histochem Cytochem 38: 1717–1723CrossRefPubMedGoogle Scholar
  101. Werner P, Voigt M, Keinänen K, Wisden W, Seeburg PH (1991) Cloning of a putative high-affinity kainate receptor expressed predominantly in hippocampal CA3 cells. Nature 351: 742–744CrossRefPubMedGoogle Scholar
  102. Westbrook GL, Lothman EW (1983) Cellular and synaptic basis of kainic acid-induced hippocampal epileptiform activity. Brain Res 273: 97–109CrossRefPubMedGoogle Scholar
  103. Wilding TJ, Huettner JE (1995) Differential antagonism of a-amino-3-hydrosy-5methyl-4-isoxazolepropionic acid-preferring and kainate-preferring receptors by 2,3-benzodiazepines. Mol Pharmacol 47: 582–587PubMedGoogle Scholar
  104. Wilding TJ, Huettner JE (1996) Antagonism pharmacology of kainate-and a-amino3-hydroxy-5-methyl-4-isoxazolepropionic acid-preferring receptors. Mol Pharmacol 49: 540–546PubMedGoogle Scholar
  105. Wilding TJ, Huettner JE (1997) Activation and desensitization of hippocampal kainate receptors. J Neurosci 17: 2713–2721PubMedGoogle Scholar
  106. Williams SR, Toth TI, Turner JP, Hughes SW, Crunelli V (1997) The ‘window’ component of the low threshold Ca’ current produces input signal amplification and bistability in cat and rat thalamocortical neurons. J Physiol (Lond) 505: 689–705CrossRefGoogle Scholar
  107. Wo ZG, Oswald RE (1994) Transmembrane topology of two kainate receptor subunits revealed by N-glycosylation. Proc Natl Acad Sci USA 91: 7154–7158CrossRefPubMedGoogle Scholar
  108. Wong LA, Mayer ML (1993) Differential modulation by cyclothiazide and concanavalin A of desensitization at native alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-and kainate-preferring glutamate receptors. Mol Pharmacol 44: 504–510PubMedGoogle Scholar
  109. Wong LA, Mayer ML, Jane DE, Watkins JC (1994) Willardiines differentiate agonist binding sites for kainate-versus AMPA-preferring glutamate receptors in DRG and hippocampal neurons. J Neurosci 14, 3881–3897PubMedGoogle Scholar
  110. Young AB, Fagg GE (1990) Excitatory amino acid receptors in the brain: membrane binding and receptor autoradiographic approaches. Trends Pharmacol Sci 11: 126–133CrossRefPubMedGoogle Scholar
  111. Zhou L-M, Gu Z-Q, Costa AM, Yamada KA, Mansson PE, Giordano T, Skolnick P, Jones KA (1997) (2S,4R)-4-methylglutamic acid (SYM 2081): a selective, high-affinity ligand for kainate receptors. J Pharmacol Exp Ther 280: 422–427Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • J. Lerma

There are no affiliations available

Personalised recommendations