Skip to main content

The Ion-Conducting Pore of Glutamate Receptor Channels

  • Chapter
Ionotropic Glutamate Receptors in the CNS

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 141))

Abstract

Ionotropic glutamate receptors (GluRs) mediate the postsynaptic response at most excitatory synapses in the brain. A variety of G1uR channel subtypes provides these synapses with a repertoire of distinct computational properties, many of which arise from ionic interactions with the channel pore. In both N-methyl-D-aspartate receptor (NMDAR) and a-amino-3-hydroxy-5methylisoxazole-4-propionic acid receptor (AMPAR) channels, a voltage-dependent blocking process renders the response of the channel dependent on the concurrent activity of the synapse. The voltage dependence of extra-cellular Mg2+ block in NMDAR (Mayer et al. 1984; Nowak et al. 1984) and cytoplasmic polyamine block in AMPAR channels (Bowie and Mayer 1995; Donevan and Rogawskj 1995; Isa et al. 1995; Kamboj et al. 1995; Koh et al.1995) allows these transmembrane proteins to integrate pre-and postsynaptic signals. Furthermore, Ca2+ influx through G1uR channels can trigger long-lasting changes in synaptic strength (Bliss and Collingridge 1993) but can also lead to cell death under pathological conditions (Choi 1988; Meldrum and Garthwaite 1990). The amount of Ca2+ entering a neuron during receptor activation may determine the nature and persistence of the postsynaptic response (Berridge 1998). Thus, the control of Ca2+ influx by voltage-dependent blocking mechanisms is essential for the role of GluRs in synaptic plasticity as a basis of higher brain functions, such as learning and memory. Given the physiological and pathophysiological relevance of ionic mechanisms in G1uR function, understanding the structural basis of ion permeation and blocking in these receptor channels is of the utmost interest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 429.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 549.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

3D:

Three dimensional

3TM:

Three transmembrane

5-HT3R:

5-hydroxytryptamine (serotonin) type-3 receptor

AChR:

Acetylcholine receptor

AMPA:

α-Amino-3-hydroxy-5-methylisoxazole-4-propionic acid

AMPAR:

AMPA receptor

BU:

Bead units

Ca channel:

Voltage-gated calcium channel

CNG:

Cyclic-nucleotide-gated

EDTA:

Ethylene diamine tetraacetic acid

GABAAR:

γ-Aminobutyric acid type A receptor

G1uR:

Glutamate receptor

G1yR:

Glycine receptor

nAChR:

Nicotinic acetylcholine receptor

MTSES:

2-Sulfonatoethyl-methanethiosufonate

MTSET:

2-Trimethylammonioethyl-methanethiosufonate

NMDAR:

N-methyl-D-aspartate receptor

SCAM:

Substituted-cysteine-accessibility method

SEM:

Standard error of the mean

References

  • Akabas MH, Stauffer DA, Xu M, Karlin A (1992) Acetylcholine receptor channel structure probed in cysteine-substitution mutants. Science 258: 307–310

    Article  PubMed  CAS  Google Scholar 

  • Ascher P, Nowak L (1988) The role of divalent cations in the N-methyl-D-aspartate responses of mouse central neurones in culture. J Physiol (Lond) 399: 247–266

    CAS  Google Scholar 

  • Beck C, Wollmuth LP, Seeburg PH, Sakmann B, Kuner T (1999) NMDAR channel segments forming the extracellular vestibule inferred from the accessibility of substituted cysteines. Neuron 22: 559–570

    Article  PubMed  CAS  Google Scholar 

  • Behe P, Stern P, Wyllie D, Nassar M, Schoepfer R, Colquhoun D (1995) Determination of NMDA NR1 subunit copy number in recombinant NMDA receptors. Proceedings Royal Society London B. Biol Sci 262: 205–213

    Google Scholar 

  • Bennett JA, Dingledine R (1995) Topology profile for a glutamate receptor: three transmembrane domains and a channel-lining reentrant membrane loop. Neuron 14: 373–384

    Article  PubMed  CAS  Google Scholar 

  • Berridge MJ (1998) Neuronal Calcium signaling. Neuron 21: 13–26

    Article  PubMed  CAS  Google Scholar 

  • Bliss TVP, Collingridge GL (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361: 31–39

    Article  PubMed  CAS  Google Scholar 

  • Bormann J, Hamill OP, Sakmann B (1987) Mechanism of anion permeation through channels gated by glycine and raminobutyric acid in mouse cultured spinal neurones. J Physiol (Lond) 385: 243–286

    CAS  Google Scholar 

  • Bowie D, Mayer ML (1995) Inward rectification of both AMPA and kainate subtype glutamate receptors generated by polyamine-mediated ion channel block. Neuron 15: 453–462

    Article  PubMed  CAS  Google Scholar 

  • Branden C, Tooze J (1991) Introduction to Protein Structure. Garland Publishing, Inc., New York

    Google Scholar 

  • Brusa R, Zimmermann F, Koh DS, Feldmeyer D, Gass P, Seeburg PH, Sprengel R (1995) Early-onset epilepsy and postnatal lethality associated with an editing-deficient G1uR-B allele in mice. Science 270: 1677–1680

    Article  PubMed  CAS  Google Scholar 

  • Burnashev N (1993) Recombinant ionotropic glutamate receptors: functional distinction imparted by different subunits. Cellular Physiology and Biochemistry 3: 318–331

    Article  CAS  Google Scholar 

  • Burnashev N, Monyer H, Seeburg PH, Sakmann B (1992a) Divalent ion permeability of AMPA receptor channels is dominated by the edited form of a single subunit. Neuron 8: 189–198

    Article  PubMed  CAS  Google Scholar 

  • Burnashev N, Schoepfer R, Monyer H, Ruppersberg JP, Günther W, Seeburg PH, Sakmann B (1992b) Control by asparagine residues of calcium permeability and magnesium blockade in the NMDA receptor. Science 257: 1415–1419

    Article  PubMed  CAS  Google Scholar 

  • Burnashev N, Villarroel A, Sakmann B (1996) Dimensions and ion selectivity of recombinant AMPA and kainate receptor channels and their dependence on Q/R site residues. J Physiol (Lond) 496: 165–173

    CAS  Google Scholar 

  • Burnashev N, Zhou Z, Neher E, Sakmann B (1995) Fractional calcium currents through recombinant G1uR channels of the NMDA,AMPA and kainate receptor subtypes. J Physiol (Lond) 485: 403–418

    CAS  Google Scholar 

  • Chiamvimonvat N, Perez-Garcia MT, Ranjan R, Marban E, Tomaselli GF (1996) Depth asymmetries of the pore-lining segments of the Na’ channel revealed by cysteine mutagenesis. Neuron 16: 1037–1047

    Article  PubMed  CAS  Google Scholar 

  • Choi DW (1988) Glutamate neurotoxicity and diseases of the nervous system. Neuron 1: 623–634

    Article  PubMed  CAS  Google Scholar 

  • Chou PY, Fasman GD (1978) Prediction of the secondary structure of proteins from their amino acid sequence. Adv Enzymol Relat Areas Mol Biol 47: 45–148

    PubMed  CAS  Google Scholar 

  • Cui C, Bahring R, Mayer ML (1998) The role of hydrophobic interactions of polyamines to non NMDA receptor ion channels. Neuropharmacology 37: 1381–1389

    Article  PubMed  Google Scholar 

  • Dani JA (1986) Ion-channel entrances influence permeation. Net charge, size, shape, binding considerations. Biophys J 49: 607–618

    Article  PubMed  CAS  Google Scholar 

  • Dingledine R, Hume RI, Heinemann SF (1992) Structural determinants of barium permeation and rectification in non-NMDA glutamate receptor channels. J Neurosci 12: 4080–4087

    PubMed  CAS  Google Scholar 

  • Donevan SD, Rogawski MA (1995) Intracellular polyamines mediate inward rectification of Cat+-permeable alpha-amino-3-hydroxy-5-methyl-4isoxazolepropionic acid receptors. Proc Natl Acad Sci USA 92: 9298–9302

    Article  PubMed  CAS  Google Scholar 

  • Doyle DA, Cabral JM, Pfuetzner RA, Kuo A, Gulbis JM, Cohen SL, Chait BT, MacKinnon R (1998) The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280: 69–77

    Article  PubMed  CAS  Google Scholar 

  • Durell SR, Guy HR (1996) Structural model of the outer vestibule and selectivity filter of the Shaker voltage-gated K+ channel. Neuropharmacology 35: 761–773

    Article  PubMed  CAS  Google Scholar 

  • Dwyer TM, Adams DJ, Hille B (1980) The permeability of the endplate channel to organic cations in frog muscle. J Gen Physiol 75: 469–492

    Article  PubMed  CAS  Google Scholar 

  • Ferrer-Montiel AV, Montai M (1996) Pentameric subunit stoichiometry of a neuronal glutamate receptor. Proc Natl Acad Sci USA 93: 2741–2744

    Article  PubMed  CAS  Google Scholar 

  • Gamier J, Osguthorpe DJ, Robson B (1978) Analysis of the accuracy and implications of simple methods for predicting the secondary structure of globular proteins. J Mol Biol 120: 97–120

    Article  Google Scholar 

  • Geiger JR, Melcher T, Koh DS, Sakmann B, Seeburg PH, Jonas P, Monyer H (1995) Relative abundance of subunit mRNAs determines gating and Ca’ permeability of AMPA receptors in principal neurons and interneurons in rat CNS. Neuron 15: 193–204

    Article  PubMed  CAS  Google Scholar 

  • Gu JG, Albuquerque C, Lee CJ, MacDermott AB (1996) Synaptic strengthening through activation of Ca’-permeable AMPA receptors. Nature 381: 793–796

    Article  PubMed  CAS  Google Scholar 

  • Guy HR, Seetharamulu P (1986) Molecular model of the action potential sodium channel. Proc Natl Acad Sci USA 83: 508–512

    Article  PubMed  CAS  Google Scholar 

  • Hille B (1992) Ionic Channels of Excitable Membranes, Vol. 2. Sinauer Assiociates, Inc. )

    Google Scholar 

  • Hirai H, Kirsch J, Laube B, Betz H, Kuhse J (1996) The glycine binding site of the Nmethyl-D-aspartate receptor subunit NR1: identification of novel determinants of co-agonist potentiation in the extracellular M3–M4 loop region. Proc Natl Acad Sci USA 93: 6031–6036

    Article  PubMed  CAS  Google Scholar 

  • Hollmann M, Heinemann S (1994) Cloned Glutamate Receptors. Annual Review of Neuroscience 17: 31–108

    Article  PubMed  CAS  Google Scholar 

  • Hollmann M, Maron C, Heinemann S (1994) N-glycosylation site tagging suggests a three transmembrane domain topology for the glutamate receptor G1uR1. Neuron 13: 1331–1343

    Article  PubMed  CAS  Google Scholar 

  • Hume RI, Dingledine R, Heinemann SF (1991) Identification of a site in glutamate receptor subunits that controls calcium permeability. Science 253: 1028–1031

    Article  PubMed  CAS  Google Scholar 

  • Isa T, Iino M, Itazawa S, Ozawa S (1995) Spermine mediates inward rectification of Ca’-permeable AMPA receptor channels. Neuroreport 6: 2045–2048

    Article  PubMed  CAS  Google Scholar 

  • Jahr CE, Stevens CF (1990) A quantitative description of NMDA receptor-channel kinetic behavior. J Neurosci 10: 1830–1837

    PubMed  CAS  Google Scholar 

  • Johnson JW, Ascher P (1990) Voltage-dependent block by intracellular Mg’ of Nmethyl-n-aspartate-activated channels. Biophys J 57: 1085–1090

    Article  PubMed  CAS  Google Scholar 

  • Kamboj SK, Swanson GT, Cull-Candy SG (1995) Intracellular spermine confers rectification on rat calcium-permeable AMPA and kainate receptors. J Physiol (Lond) 297–303

    Google Scholar 

  • Karlin A, Akabas MH (1995) Toward a structural basis for the function of nicotinic acetylcholine receptors and their cousins. Neuron 15: 1231–1244

    Article  PubMed  CAS  Google Scholar 

  • Karlin A, Akabas MH (1998) Substituted-cysteine-accessibility method. In: Methods in Enzymology, Vol. 293. P. M. Conn, eds. ( San Diego, CA: Academic Press Inc. ), pp. 123–136

    Google Scholar 

  • Koh DS, Burnashev N, Jonas P (1995) Block of native Ca’ permeable AMPA receptors in rat brain by intracellular polyamines generates double rectification. J Physiol (Lond) 486: 305–312

    CAS  Google Scholar 

  • Kuner T, Beck C, Seeburg PH, Sakmann B (1997) Pore-lining residues of the AMPA receptor channel M2 segment. Neuroscience Abstract 23: 925

    Google Scholar 

  • Kuner T, Schoepfer R (1996) Multiple structural elements determine subunit-specificity of Mg’ block in NMDA receptor channels J Neurosci 16: 3549–3558

    CAS  Google Scholar 

  • Kuner T, Wollmuth LP, Karlin A, Seeburg PH, Sakmann B (1996) Structure of the NMDA receptor channel M2 segment inferred from the accessibility of substituted cysteines. Neuron 17: 343–352

    Article  PubMed  CAS  Google Scholar 

  • Kupper J, Ascher P, Neyton J (1996) Probing the pore region of recombinant N-methylD-aspartate channels using external and internal magnesium block. Proc Natl Acad Sci USA 93: 8648–8653

    Article  PubMed  CAS  Google Scholar 

  • Kupper J, Ascher P, Neyton J (1998) Internal Mg’ block of recombinant NMDA channels mutated within the selectivity filter and expressed in Xenopus oocytes. J Physiol (Lond) 1–12

    Google Scholar 

  • Kürz LL, Zühlke RD, Zhang H-J, Joho RH (1995) Side-Chain Accessiblilties in the Pore of a K’ Channel Probed by Sulfhydryl-Specific Reagents after CysteineScanning Mutagenesis. Biophysical Journal 68: 900–905

    Article  PubMed  Google Scholar 

  • Laube B, Kuhse J, Betz H (1998) Evidence for a tetrameric structure of recombinant NMDA receptors. J Neurosci 18: 2954–2961

    PubMed  CAS  Google Scholar 

  • MacDermott AB, Mayer ML, Westbrook GL, Smith SJ, Barker JL (1986) NMDA receptor activation increases cytoplasmic calcium concentration in cultured spinal cord neurons. Nature 321: 261–263

    Article  Google Scholar 

  • Mano I, Teichberg VI (1998) A tetrameric subunit stoichiometry for a glutamate receptor-channel complex. Neuroreport 9: 327–331

    Article  PubMed  CAS  Google Scholar 

  • Mayer ML, Westbrook GL (1987) Permeation and Block of N-methyl-D-aspartic acid receptor channels by divalent cations in mouse cultured central neurons. J Physiol (Lond) 394: 501–527

    CAS  Google Scholar 

  • Mayer ML, Westbrook GL, Guthrie PB (1984) Voltage-dependent block by Mg’ of NMDA responses in spinal cord neurons. Nature 309: 261–263

    Article  PubMed  CAS  Google Scholar 

  • Meldrum B, Garthwaite J (1990) Excitatory amino acid neurotoxicity and neurodegenerative disease. Trends Pharmacol. Sci. 11: 379–387

    Google Scholar 

  • Miller C (1989) Genetic manipulation of ion channels: a new approach to structure and mechanism. Neuron 2: 1195–1205

    Article  PubMed  CAS  Google Scholar 

  • Montal M (1995) Molecular mimicry in channel-protein structure. Curr Opin Struct Biol 5: 501–506

    Article  PubMed  CAS  Google Scholar 

  • Montal M (1996) Protein folds in channel structure. Curr Opin Struct Biol 6: 499–510

    Article  PubMed  CAS  Google Scholar 

  • Monyer H, Burnashev N, Laurie DJ, Sakmann B, Seeburg PH (1994) Developmental and regional expression in the rat brain and functional properties of four NMDA receptors. Neuron 12: 529–540

    Article  PubMed  CAS  Google Scholar 

  • Mori H, Masaki H, Yamakura T, Mishina M (1992) Identification by mutagenesis of a Mg’-block site of the NMDA receptor channel. Nature 358: 673–675

    Article  PubMed  CAS  Google Scholar 

  • Nakanishi S, Masu M (1994) Molecular diversity and functions of glutamate receptors. Annual Review of Biophysics and Biomolecular Structure 23: 319–348

    Article  PubMed  CAS  Google Scholar 

  • Nowak L, Bregestovsky P, Ascher P, Herbet A, Prochiantz A (1984) Magnesium gates glutamate-activated channels in mouse central neurons. Nature 307: 462–465

    Article  PubMed  CAS  Google Scholar 

  • Otis TS, Raman IM, Trussell LO (1995) AMPA receptors with high Ca’ permeability mediate synaptic transmission in the avian auditory pathway. J Physiol (Lond) 482: 309–315

    CAS  Google Scholar 

  • Pascual JM, Shieh C-C, Kirsch GE, Brown AM (1995) K’ pore structure revealed by reporter cysteines at inner and outer surfaces. Neuron 14: 1055–1063

    Article  PubMed  CAS  Google Scholar 

  • Premkumar LS, Auerbach A (1996) Identification of a high affinity divalent cation binding site near the entrance of the NMDA receptor channel. Neuron 16: 869880

    Google Scholar 

  • Premkumar LS, Auerbach A (1997) Stoichiometry of recombinant N-methyl-Daspartate receptor channels inferred from single-channel current patterns. J Gen Physiol 110: 485–502

    Article  PubMed  CAS  Google Scholar 

  • Rosenmund C, Stern BY, Stevens CF (1998) The tetrameric structure of a glutamate receptor channel. Science 280: 1596–1599

    Article  PubMed  CAS  Google Scholar 

  • Rost B, Sander C (1994) Combining evolutionary information and neural networks to predict protein secondary structure. Proteins 19: 55–72

    Article  PubMed  CAS  Google Scholar 

  • Rozov A, Zilberter Y, Wollmuth LP, Burnashev N (1998) Facilitation of currents through rat Ca’-permeable AMPA receptor channels by activity-dependent relief from polyamine block. J Physiol (Lond) 361–377

    Google Scholar 

  • Ruppersberg JP, v. Kitzing E, Schoepfer R (1994) The mechanism of magnesium block of NMDA receptors. Seminars in the Neurosciences 6: 87–96

    Article  CAS  Google Scholar 

  • Sakurada K, Masu M, Nakanishi S (1993) Alteration of Ca’ permeability and sensitivity to Mg’ and channel blockers by a single amino acid substitution in the Nmethyl-D-aspartate receptor. J Biol Chem 268: 410–415

    PubMed  CAS  Google Scholar 

  • Sankararamakrishnan R, Adcock C, Sansom MS (1996) The pore domain of the nicotinic acetylcholine receptor: molecular modeling, pore dimensions, electrostatics. Biophys J 71: 1659–1671

    Article  PubMed  CAS  Google Scholar 

  • Schneggenburger R, Zhou Z, Konnerth A, Neher E (1993) Fractional contribution of calcium to the cation current through glutamate receptor channels. Neuron 11: 133–143

    Article  PubMed  CAS  Google Scholar 

  • Seeburg PH (1993) The TINS/TiPS Lecture. The molecular biology of mammalian glutamate receptor channels. Trends Neurosci 16: 359–365

    Article  PubMed  CAS  Google Scholar 

  • Seeburg PH, Burnashev N, Kohr G, Kuner T, Sprengel R, Monyer H (1995) The NMDA receptor channel: molecular design of a coincidence detector. Recent Prog Horm Res 50: 19–34

    PubMed  CAS  Google Scholar 

  • Sharma G, Stevens CF (1996) Interactions between two divalent ion binding sites in N-methyl-D-aspartate receptor channels. Proc Natl Acad Sci USA 93: 1417014175

    Google Scholar 

  • Single FN, Rozov A, Burnashev N, Zimmermann M, Hanley DF, Sakmann B, Seeburg PH, Sprengel R (1997) Effects of targeted point mutation at the N-site of the NMDA receptor channel M2 domain in mice. Society for Neuroscience Abstracts 23: 1134

    Google Scholar 

  • Sommer B, Köhler M, Sprengel R, Seeburg PH (1991) RNA editing in brain controls a determinant of ion flow in glutamate-gated channels. Cell 67: 11–19

    Article  PubMed  CAS  Google Scholar 

  • Sprengel R, Seeburg PH (1995) Ionotropic Glutamate Receptors. In: Ligand and voltage-gated ion channels. R. A. North, eds. ( Boca Raton, Florida: CRC Press ), pp. 213–263

    Google Scholar 

  • Stryer L (1995) Biochemistry. ( New York: W. H. Freeman )

    Google Scholar 

  • Sun Z-P, Akabas MH, Goulding EH, Karlin A, Siegelbaum SA (1996) Exposure of Residues in the Cyclic Nucleotide-Gated Channel Pore: P- Region Structure and Function in Gating. Neuron 16: 141–149

    Google Scholar 

  • Sutcliffe MJ, Wo ZG, Oswald RE (1996) Three-dimensional models of non-NMDA glutamate receptors. Biophys J 70: 1575–1589

    Article  PubMed  CAS  Google Scholar 

  • Unwin N, Toyoshima C, Kubalek E (1988) Arrangement of the acetylcholine receptor subunits in the resting and desensitized states, determined by cryoelectron microscopy of crystallized Torpedo postsynaptic membranes. J Cell Biol 107: 1123–1138

    Article  PubMed  CAS  Google Scholar 

  • Unwin N (1995) Acetylcholine receptor channel imaged in the open state. Nature 373: 37–43

    Article  PubMed  CAS  Google Scholar 

  • Verdoorn TA, Burnashev N, Monyer H, Seeburg PH, Sakmann B (1991) Structural determinants of ion flow through recombinant glutamate receptor channels. Science 252: 1715–1718

    Article  PubMed  CAS  Google Scholar 

  • Villarroel A, Burnashev N, Sakmann B (1995) Dimensions of the narrow portion of a recombinant NMDA receptor channel. Biophys J 68: 866–875

    Article  PubMed  CAS  Google Scholar 

  • Wang F, Imoto K (1992) Pore size and negative charge as structural determinants of permeability in the Torpedo nicotinic acetylcholine receptor channel. Proceedings Royal Society London Ser. B. Biol. Sci. 250: 11–17

    Google Scholar 

  • Williams K, Pahk AJ, Kashiwagi K, Masuko T, Nguyen ND, Igarashi K (1998) The selectivity filter of the N-methyl-D-aspartate receptor: a tryptophan residue controls block and permeation of Mg’. Mol Pharmacol 53: 933–941

    PubMed  CAS  Google Scholar 

  • Wo ZG, Oswald RE (1994) Transmembrane topology of two kainate receptor subunits revealed by N-glycosylation. Proc Natl Acad Sci USA 91: 7154–7158

    Article  PubMed  CAS  Google Scholar 

  • Wo ZG, Oswald RE (1995a) A topological analysis of goldfish kainate receptors predicts three transmembrane segments. J Biol Chem 270: 2000–2009

    Article  PubMed  CAS  Google Scholar 

  • Wo ZG, Oswald RE (1995b) Unraveling the modular design of glutamate-gated ion channels. Trends Neurosci 18: 161–168

    Article  PubMed  CAS  Google Scholar 

  • Wollmuth LP, Beck C, Seeburg PH, Sakmann B (1998a) Determinants of Ca’ transport in NMDA receptor channels reside in the M3 segment of the NR1-subunit. Society for Neuroscience Abstracts 24: 840

    Google Scholar 

  • Wollmuth LP, Kuner T, Sakmann B (1998b) Adjacent asparagines in the NR2-subunit of the NMDA receptor channel control the voltage-dependent block by extracellular Mg’. J Physiol (Lond) 506: 13–32

    Article  CAS  Google Scholar 

  • Wollmuth LP, Kuner T, Sakmann B (1998c) Intracellular Mg’ interacts with structural determinants of the narrow constriction contributed by the NR1-subunit in the NMDA receptor channel J Physiol (Lond) 506: 33–52

    CAS  Google Scholar 

  • Wollmuth LP, Kuner T, Seeburg PH, Sakmann B (1996) Differential contribution of the

    Google Scholar 

  • NR1- and NR2A-subunits to the selectivity filter of recombinant NMDA receptor channels. J Physiol (Lond) 491:779–797

    Google Scholar 

  • Wollmuth LP, Sakmann B (1998) Different Mechanisms of Ca’ Transport in NMDA and Ca’-Permeable AMPA Glutamate Receptor Channels. J Gen Physiol 112: 623–636

    Article  PubMed  CAS  Google Scholar 

  • Wood MW, VanDongen HM, VanDongen AM (1995) Structural conservation of ion conduction pathways in K channels and glutamate receptors. Proc Natl Acad Sci USA 92: 4882–4886

    Article  PubMed  CAS  Google Scholar 

  • Woodhull AM (1973) Ionic blockage of sodium channels in nerve. J Gen Physiol 61: 687–708

    Article  PubMed  CAS  Google Scholar 

  • Xu M, Akabas MH (1993) Amino acids lining the channel of the y,aminobutyric acid type A receptor identified by cysteine substitution. J Biol Chem 268: 21505–21508

    PubMed  CAS  Google Scholar 

  • Yakel JL, Shao XM, Jackson MB (1990) The selectivity of the channel coupled to the 5-HT3 receptor. Brain Res 533: 46–52

    Article  PubMed  CAS  Google Scholar 

  • Yang J (1990) Ion permeation through 5-hydroxytryptamine-gated channels in neuroblastoma N18 cells. J Gen Physiol 96: 1177–1198

    Article  PubMed  CAS  Google Scholar 

  • Yang J, Ellinor PT, Sather WA, Zhang JF, Tsien RW (1993) Molecular determinants of Ca’ selectivity and ion permeation in L-type Ca’ channels. Nature 366: 158–161

    Article  PubMed  CAS  Google Scholar 

  • Zarei MM, Dani JA (1994) Ionic permeability characteristics of the N-methyl-D-aspartate receptor channel. J Gen Physiol 103: 231–248

    Article  PubMed  CAS  Google Scholar 

  • Zarei MM, Dani JA (1995) Structural basis for explaining open-channel blockade of the NMDA receptor. J Neurosci 15: 1446–1454

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kuner, T., Wollmuth, L.P., Sakmann, B. (1999). The Ion-Conducting Pore of Glutamate Receptor Channels. In: Jonas, P., Monyer, H. (eds) Ionotropic Glutamate Receptors in the CNS. Handbook of Experimental Pharmacology, vol 141. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-08022-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-08022-1_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08539-0

  • Online ISBN: 978-3-662-08022-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics