Skip to main content

Phosphorylation of Glutamate Receptors

  • Chapter
Ionotropic Glutamate Receptors in the CNS

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 141))

Abstract

Excitatory synaptic transmission between neurons in the central nervous system is mediated mainly by the neurotransmitter glutamate. The glutamate released from the presynaptic neuron diffuses across the synaptic cleft and activates glutamate receptors to complete the process of synaptic transmission. Glutamate receptors can be grouped into two broad categories depending on the signal transduction mechanism. lonotropic glutamate receptors (iGluR) transduce glutamate binding by opening ion channels permeable to cations, while metabotropic glutamate receptors (mGluRs) activate G proteins, which directly or indirectly regulate ion channels and enzymes. Ionotropic glutamate receptors can be further subdivided into three groups depending on their agonist preferences and biophysical properties. N-methylD-aspartate (NMDA) receptors preferentially bind NMDA, while a-amino-3hydroxy-5-methyl-4-isoxazole proprionate (AMPA) receptors and kainate (KA) receptors show high affinity for AMPA and KA, respectively. The function of glutamate receptors can be modulated by various mechanisms, however protein phosphorylation has been shown to be critical in the control of glutamate receptor function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 429.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 549.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barria A, Derkach V, Soderling T (1997a) Identification of the Cat’/calmodulindependent protein kinase II regulatory phosphorylation site in the a-amino-3hydroxyl-5-methyl-4-isoxazole-propionate type glutamate receptor. J Biol Chem 272: 32727–32730

    Article  PubMed  CAS  Google Scholar 

  • Barria A, Muller D, Derkach V, Griffith LC, Soderling TR (1997b) Regulatory phosphorylation of AMPA-type glutamate receptors by CaM-KII during long-term potentiation. Science 276: 2042–2045

    Article  PubMed  CAS  Google Scholar 

  • Baude A, Nusser Z, Molnar E, Mcllhinney RA, Somogyi P (1995) High-resolution immunogold localization of AMPA type glutamate receptor subunits at synaptic and non-synaptic sites in rat hippocampus. Neuroscience 69: 1031–1055

    Article  PubMed  CAS  Google Scholar 

  • Bear MF, Abraham WC (1996) Long-term depression in hippocampus. Annu Rev Neurosci 19: 437–462

    Article  PubMed  CAS  Google Scholar 

  • Bekkers JM, Stevens CF (1990) Presynaptic mechanism for long-term potentiation in the hippocampus [see comments]. Nature 346: 724–729

    Article  PubMed  CAS  Google Scholar 

  • Benke TA, Bresink I, Collett VJ, Doherty AJ, Henley JM, Collingridge GL (1996) Post-translational mechanisms which could underlie the postsynaptic expression of LTP and LTD. In: Cortical plasticity (editors: Fazeli MS and Collingridge GL) BIOS Scientific Publishers Ltd., Oxford, p 83–102

    Google Scholar 

  • Benke TA, Luthi A, Isaac JT, Collingridge GL (1998) Modulation of AMPA receptor unitary conductance by synaptic activity. Nature 393: 793–797

    Article  PubMed  CAS  Google Scholar 

  • Bennett JA, Dingledine R (1995) Topology profile for a glutamate receptor: Three transmembrane domains and a channel-lining reentrant membrane loop. Neuron 14: 373–384

    Google Scholar 

  • Bernard V, Somogyi P, Bolam JP (1997) Cellular, subcellular, and subsynaptic distribution of AMPA-type glutamate receptor subunits in the neostriatum of the rat. J Neurosci 17: 819–833

    PubMed  CAS  Google Scholar 

  • Betz H (1990) Ligand-gated ion channels in the brain: the amino acid receptor super-family. Neuron 5: 383–392

    Article  PubMed  CAS  Google Scholar 

  • Blackstone C, Murphy TH, Moss SJ, Baraban JM, Huganir RL (1994) Cyclic AMP and synaptic activity-dependent phosphorylation of AMPA-preferring glutamate receptors. J Neurosci 14: 7585–7593

    PubMed  CAS  Google Scholar 

  • Blackstone CD, Moss SJ, Martin LJ, Levey AI, Price DL, Huganir RL (1992) Biochemical characterization and localization of a non-N-methyl-D-aspartate glutamate receptor in rat brain. J Neurochem 58: 1118–1126

    Article  PubMed  CAS  Google Scholar 

  • Bliss TVP, Collingridge GL (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361: 31–39

    Article  PubMed  CAS  Google Scholar 

  • Bliss TVP, Fazeli MS (1996) The locus of expression of NMDA receptor-dependent LTP in the hippocampus. In: MS Fazeli and GL Collingridge (ed Cortical Plasticity. BIOS Scientific Publishers Ltd., Oxford, p 61–82

    Google Scholar 

  • Blitzer RD, Connor JH, Brown GP, Wong T, Shenolikar S, Iyengar R, Landau EM (1998) Gating of CaMKII by cAMP-regulated protein phosphatase activity during LTP. Science 280: 1940–1943

    Article  PubMed  CAS  Google Scholar 

  • Blitzer RD, Wong T, Nouranifar R, Iyengar R, Landau EM (1995) Postsynaptic cAMP pathway gates early LTP in hippocampal CA1 region. Neuron 15: 1403–1414

    Article  PubMed  CAS  Google Scholar 

  • Bolshakov VY, Siegelbaum SA (1994) Postsynaptic induction and presynaptic expression of hippocampal long-term depression. Science 264: 1148–1152

    Article  PubMed  CAS  Google Scholar 

  • Boulier J, Hollmann M, O’Shea-Greenfield A, Hartley M, Deneris E, Maron C, Heinemann S (1990) Molecular cloning and functional expression of glutamate receptor subunit genes. Science 249: 1033–1037

    Article  Google Scholar 

  • Bourtchuladze R, Frenguelli B, Blendy J, Cioffi D, Schutz G, Silva AJ (1994) Deficient long-term memory in mice with a targeted mutation of the cAMP-responsive element binding protein. Cell 79: 59–68.

    Article  PubMed  CAS  Google Scholar 

  • Braun AP, Schulman H (1995) The multifunctional calcium/calmodulin-dependent protein kinase: from form to function. Annu Rev Physiol 57: 417–445

    Article  PubMed  CAS  Google Scholar 

  • Carder RK (1997) Immunocytochemical characterization of AMPA-selective glutamate receptor subunits: laminar and compartmental distribution in macaque striate cortex. J Neurosci 17: 3352–3363

    PubMed  CAS  Google Scholar 

  • Carr DW, Hausken ZE, Fraser ID, Stofko-Hahn RE, Scott JD (1992) Association of the type II cAMP-dependent protein kinase with a human thyroid RII-anchoring protein. Cloning and characterization of the RII- binding domain. J Biol Chem 267: 13376–13382

    Google Scholar 

  • Carr DW, Stofko-Hahn RE, Fraser ID, Bishop SM, Acott TS, Brennan RG, Scott JD (1991) Interaction of the regulatory subunit ( RII) of cAMP-dependent protein kinase with RII-anchoring proteins occurs through an amphipathic helix binding motif. J Biol Chem 266: 14188–14192

    Google Scholar 

  • Chavez-Noriega LE, Stevens CF (1994) Increased transmitter release at excitatory synapses produced by direct activation of adenylate cyclase in rat hippocampal slices. J Neurosci 14: 310–317

    PubMed  CAS  Google Scholar 

  • Chen L, Huang L-YM (1992) Protein kinase C reduces Mg’ block of NMDAreceptor channels as a mechanism of modulation. Nature 356: 521–523

    Article  PubMed  CAS  Google Scholar 

  • Coghlan VM, Perrino BA, Howard M, Langeberg LK, Hicks JB, Gallatin WM, Scott JD (1995) Association of protein kinase A and protein phosphatase 2B with a common anchoring protein. Science 267: 108–111

    Article  PubMed  CAS  Google Scholar 

  • Cohen P (1989) The structure and regulation of protein phosphatases. Annu Rev Biochem 58: 453–508

    Article  PubMed  CAS  Google Scholar 

  • De Koninck P, Schulman H (1998) Sensitivity of CaM kinase II to the frequency of Ca2+ oscillations [see comments]. Science 279: 227–230

    Article  PubMed  Google Scholar 

  • Dong H, O’Brien RJ, Fung ET, Lanahan AA, Worley PF, Huganir RL (1997) GRIP: a synaptic PDZ domain-containing protein that interacts with AMPA receptors. Nature 386: 279–284

    Article  PubMed  CAS  Google Scholar 

  • Dunkley PR (1991) Autophosphorylation of neuronal calcium/calmodulin-stimulated protein kinase II. Mol Neurobiol 5: 179–202

    Article  PubMed  CAS  Google Scholar 

  • Durand GM, Zukin RS (1993) Developmental regulation of mRNAs encoding rat brain kainate/AMPA receptors: a Northern analysis study. J Neurochem 61: 2239–2246

    Article  PubMed  CAS  Google Scholar 

  • Frey U, Huang YY, Kandel ER (1993) Effects of cAMP simulate a late stage of LTP in hippocampal CA1 neurons. Science 260: 1661–1664

    Article  PubMed  CAS  Google Scholar 

  • Greengard P, Jen J, Nairn AC, Stevens CF (1991) Enhancement of the glutamate response by cAMP-dependent protein kinase in hippocampal neurons. Science 253: 1135–1138

    Article  PubMed  CAS  Google Scholar 

  • Grover LM, Teyler TJ (1990) Two components of long-term potentiation induced by different patterns of afferent activation. Nature 347: 477–479

    Article  PubMed  CAS  Google Scholar 

  • Hayashi Y, Ishida A, Katagiri H, Mishina M, Fujisawa H, Manabe T, Takahashi T (1997) Calcium-and calmodulin-dependent phosphorylation of AMPA type glutamate receptor subunits by endogenous protein kinases in the post-synaptic density. Mol Brain Res 46: 338–342

    Article  PubMed  CAS  Google Scholar 

  • Hollmann M, Hartley M, Heinemann S (1991) Ca’ permeability of KA-AMPA-gated glutamate receptor channels depends on subunit composition. Science 252: 851853

    Google Scholar 

  • Hohmann M, Maron C, Heinemann S (1994) N-Glycosylation site tagging suggests a three transmembrane domain topology of the glutamate receptor GluRl. Neuron 13: 1331–1343

    Article  Google Scholar 

  • Hollmann M, O’Shea-Greenfield A, Rogers SW, Heinemann S (1989) Cloning by functional expression of a member of the glutamate receptor family. Nature 342: 643648

    Google Scholar 

  • Hu G-Y, Hvalby O, Walaas SI, Albert KA, Skjeflo P, Andersen P, Greengard P (1987) Protein kinase C injection into hippocampal pyramidal cells elicits features of long term potentiation. Nature 328: 426–429

    Article  PubMed  CAS  Google Scholar 

  • Huang K-P, Huang FL, Mahoney CW, Chen K-H (1991) Protein kinase C subtypes and their respective roles. Prog Brain Res 89: 143–154

    Article  PubMed  CAS  Google Scholar 

  • Impey S, Mark M, Villacres EC, Poser S, Chavkin C, Storm DR (1996) Induction of CRE-mediated gene expression by stimuli that generate long-lasting LTP in area CAl of the hippocampus. Neuron 16: 973–982

    Article  PubMed  CAS  Google Scholar 

  • Isaac JTR, Nicoll RA, Malenka RC (1995) Evidence for silent synapses: Implications for the expression of LTP. Neuron 15: 427–434

    Google Scholar 

  • Ishida A, Kameshita I, Fujisawa H (1998) A novel protein phosphatase that dephosphorylates and regulates Ca2+/calmodulin-dependent protein kinase II. J Biol Chem 273: 1904–1910

    Article  PubMed  CAS  Google Scholar 

  • Kameyama K, Lee H-K, Bear MF, Huganir RL (1998) Involvement of a postsynaptic protein kinase A substrate in the expression of homosynaptic long-term depression. Neuron 21: 1163–1175

    Article  PubMed  CAS  Google Scholar 

  • Keinanen K, Wisden W, Sommer B, Werner P, Herb A, Verdoorn TA, Sakmann B, Seeburg PH (1990) A family of AMPA-selective glutamate receptors. Science 249: 556–560

    Article  PubMed  CAS  Google Scholar 

  • Keller BU, Hollmann M, Heinemann S, Konnerth A (1992) Calcium influx through subunits GIuR1/G1uR3 of kainate/AMPA receptor channels is regulated by cAMP dependent protein kinase. EMBO J 11: 891–896

    PubMed  CAS  Google Scholar 

  • Kemp BE, Pearson RB (1990) Protein kinase recognition sequence motifs. Trends Biochem Sci 15: 342–346

    Article  PubMed  CAS  Google Scholar 

  • Kennedy MB, Bennett MK, Erondu NE (1983) Biochemical and immunochemical evidence that the “major postsynaptic density protein” is a subunit of a calmodulindependent protein kinase. Proc Natl Acad Sci USA 80: 7357–7361

    Article  PubMed  CAS  Google Scholar 

  • Kikkawa U, Kishimoto A, Nishizuka Y (1989) The protein kinase C family: Heterogeneity and its implications. Annu Rev Biochem 58: 31–44

    Google Scholar 

  • Kishimoto A, Mikawa K, Hashimoto K, Yasuda I, Tanaka S-I, Tominaga M, Kuroda T, Nishizuka Y (1989) Limited proteolysis of protein kinase C subspecies by calcium-dependent neutral protease (calpain). J Biol Chem 264: 4088–4092

    PubMed  CAS  Google Scholar 

  • Klann E, Chen S-J, Sweatt D (1993) Mechanism of protein kinase C activation during the induction and maintenance of long-term potentiation probed using a selective peptide substrate. Proc Natl Acad Sci USA 90: 8337–8341

    Article  PubMed  CAS  Google Scholar 

  • Knapp AG, Dowling JE (1987) Dopamine enhances excitatory amino acid-gated conductances in cultured retinal horizontal cells. Nature 325: 437–439

    Article  PubMed  CAS  Google Scholar 

  • Kornau HC, Schenker LT, Kennedy MB, Seeburg PH (1995) Domain interaction between NMDA receptor subunits and the postsynaptic density protein PSD-95. Science 269: 1737–1740

    Article  PubMed  CAS  Google Scholar 

  • Kraft AS, Anderson WB (1983) Phorbol esters increase the amount of Ca2+, phospholipid-dependent protein kinase associated with plasma membrane. Nature 301: 621–623

    Article  PubMed  CAS  Google Scholar 

  • Lau L-F, Huganir RL (1995) Differential tyrosine phosphorylation of N-methyl-Daspartate receptor subunits. J Biol Chem 270: 20036–20041

    Article  PubMed  CAS  Google Scholar 

  • Lee H-K, Kameyama K, Huganir RL, Bear MF (1998) NMDA induces long-term synaptic depression and dephosphorylation of the G1uR1 subunit of AMPA receptors in hippocampus. Neuron 21: 1151–1162

    Article  PubMed  CAS  Google Scholar 

  • Liao D, Hessler NA, Malinow R (1995) Activation of postsynaptically silent synapses during pairing-induced LTP in CA1 region of hippocampal slice. Nature 375: 400404

    Google Scholar 

  • Lisman J (1994) The CaM Kinase II hypothesis for the storage of synaptic memory. Trends Neurosci. 17: 406–412

    Article  PubMed  CAS  Google Scholar 

  • Lledo P-M, Hjelmstad GO, Mukherji S, Soderling TR, Malenka RC, Nicoll RA (1995) Calcium/calmodulin-dependent kinase II and long-term potentiation enhance synaptic transmission by the same mechanism. Proc Natl Acad Sci USA 92: 11175–11179

    Article  PubMed  CAS  Google Scholar 

  • Madison DV, Malenka RC, Nicoll RA (1991) Mechanisms underlying long-term potentiation of synaptic transmission. Annu Rev Neurosci 14: 379–397

    Article  PubMed  CAS  Google Scholar 

  • Mammen AL, Kameyame K, Roche KW, Huganir RL (1997) Phosphorylation of the a-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor G1uR1 subunit by calcium/calmodulin-dependent kinase II. J Biol Chem 272: 32528–32533

    Article  PubMed  CAS  Google Scholar 

  • Martin LJ, Blackstone CD, Levey AI, Huganir RL, Price DL (1993) AMPA glutamate receptor subunits are differentially distributed in rat brain. Neurosci 53: 327–358

    Article  CAS  Google Scholar 

  • Martin LJ, Furuta A, Blackstone CD (1998) AMPA receptor protein in developing rat brain: Glutamate receptor-1 expression and localization change at regional, cellular, and subcellular levels with maturation. Neuroscience 83: 917–928

    Article  PubMed  CAS  Google Scholar 

  • Matthies H, Reymann KG (1993) Protein kinase A inhibitors prevent the maintenance of hippocampal long-term potentiation. Neuroreport 4: 712–714

    Article  PubMed  CAS  Google Scholar 

  • McGlade-McCulloh E, Yamamoto H, Tan S-E, Brickey DA, Soderling TR (1993) Phosphorylation and regulation of glutamate receptors by calcium/calmodulindependent protein kinase II. Nature 362: 640–642

    Article  PubMed  CAS  Google Scholar 

  • Mochly-Rosen D (1995) Localization of protein kinases by anchoring proteins: a theme in signal transduction. Science 268: 247–251

    Article  PubMed  CAS  Google Scholar 

  • Molnar E, Baude A, Richmond SA, Patel PB, Somogyi P, Mcllhinney RAJ (1993) Biochemical and immunocytochemical characterization of antipeptide antibodies to a cloned GluR1 glutamate receptor subunit: cellular and subcellular distribution in the rat forebrain. Neuroscience 53: 307–326

    Article  PubMed  CAS  Google Scholar 

  • Monyer H, Seeburg PH, Wisden W (1991) Glutamate-operated channels: developmentally early and mature forms arise by alternative splicing. Neuron 6: 799–810

    Article  PubMed  CAS  Google Scholar 

  • Moon IS, Apperson ML, Kennedy MB (1994) The major tyrosine-phosphorylated protein in the postsynaptic density fraction is N-methyl-D-aspartate receptor subunit 2B. Proc Natl Acad Sci USA 91: 3954–3958

    Article  PubMed  CAS  Google Scholar 

  • Mosbacher J, Schoepfer R, Monyer H, Burnashev N, Seeburg PH, Ruppersberg JP (1994) A molecular determinant for submillisecond desensitization in glutamate receptors. Science 266: 1059–1062

    Article  PubMed  CAS  Google Scholar 

  • Moss SJ, Blackstone CD, Huganir RL (1993) Phosphorylation of recombinant non-NMDA glutamate receptors on serine and tyrosine residues. Neurochem Res 18: 105–110

    Article  PubMed  CAS  Google Scholar 

  • Muller BM, Kistner U, Kindler S, Chung WJ, Kuhlendahl S, Fenster SD, Lau LF, Veh RW, Huganir RL, Gundelfinger ED, Garner CC (1996) SAP102, a novel postsynaptic protein that interacts with NMDA receptor complexes in vivo. Neuron 17: 255–265

    Article  PubMed  CAS  Google Scholar 

  • Nakanishi N, Shneider NA, Axel R (1990) A family of glutamate receptor genes: evidence for the formation of heteromultimeric receptors with distinct channel properties. Neuron 5: 569–581

    Article  PubMed  CAS  Google Scholar 

  • O’Brien RJ, Kamboj S, Ehlers MD, Rosen KR, Fischbach GD, Huganir RL (1998) Activity-dependent modulation of synaptic AMPA receptor accumulation. Neuron 21: 1067–1078

    Article  PubMed  Google Scholar 

  • Oliet SHR, Malenka RC, Nicoll RA (1997) Two distinct forms of long-term depression coexist in hippocampal pyramidal cells. Neuron 18: 969–982

    Article  PubMed  CAS  Google Scholar 

  • Partin KM, Bowie D, Mayer ML (1995) Structural determinates of allosteric regulation in alternatively spliced AMPA receptors. Neuron 14: 833–843

    Article  PubMed  CAS  Google Scholar 

  • Partin KM, Patneau DK, Mayer ML (1994) Cyclothiazide differentially modulates desensitization of alpha-amino-3- hydroxy-5-methyl-4-isoxazolepropionic acid receptor splice variants. Mol Pharmacol 46: 129–38

    PubMed  CAS  Google Scholar 

  • Pellegrini-Giampietro DE, Bennett MV, Zukin RS (1992) Are Ca(2+)-permeable kainate/AMPA receptors more abundant in immature brain? Neurosci Lett 144: 65–69

    Article  PubMed  CAS  Google Scholar 

  • Petralia RS, Wenthold RJ (1992) Light and electron immunocytochemical localization of AMPA-selective glutamate receptors in the rat brain. J Comp Neurol 318: 329–354

    Article  PubMed  CAS  Google Scholar 

  • Pettit DL, Perlman S, Malinow R (1994) Potentiated transmission and prevention of further LTP by increased CaMKII activity in postsynaptic hippocampal slice neurons. Science 266: 1881–1885

    Article  PubMed  CAS  Google Scholar 

  • Raymond LA, Blackstone CD, Huganir RL (1993) Phosphorylation of amino acid neurotransmitter receptors in synaptic plasticity. Trends Neurosci 16: 147–153

    Article  PubMed  CAS  Google Scholar 

  • Ricciarelli R, Azzi A (1998) Regulation of recombinant PKCalpha activity by protein phosphatase 1 and protein phosphatase 2 A [In Process Citation]. Arch Biochem Biophys 355: 197–200

    Article  PubMed  CAS  Google Scholar 

  • Roche KW, O’Brien RJ, Mammen AL, Bernhardt J, Huganir RL (1996) Characterization of multiple phosphorylation sites on the AMPA receptor GluR1 subunit. Neuron 16: 1179–1188

    Article  PubMed  CAS  Google Scholar 

  • Roche KW, Tingley WG, Huganir RL (1994) Glutamate receptor phosphorylation and synaptic plasticity. Curr Opin Neurobiol 4: 383–388

    Article  PubMed  CAS  Google Scholar 

  • Rosenmund C, Carr DW, Bergeson SE, Nilaver G, Scott JD, Westbrook GL (1994) Anchoring of protein kinase A is required for modulation of AMPA/kainate receptors on hippocampal neurons. Nature 368: 853–856

    Article  PubMed  CAS  Google Scholar 

  • Sacktor TC, Osten P, Valsamis H, Jiang X, Naik MU, Sublette E (1993) Persistent activation of the Çisoform of protein kinase C in the maintenance of long-term potentiation. Proc Natl Acad Sci USA 90: 8342–8346

    Article  PubMed  CAS  Google Scholar 

  • Sheng M (1997) Excitatory synapses. Glutamate receptors put in their place [news; comment]. Nature 386: 221, 223

    Google Scholar 

  • Shinolikar S, Ingebritsen TS (1984) Protein (serine and threonine) phosphate phosphatases. Methods Enzymol 107: 102–129

    Article  Google Scholar 

  • Soderling TR, Tan SE, McGlade-McCulloh E, Yamamoto H, Fukunaga K (1994) Excitatory interactions between glutamate receptors and protein kinases. J Neurobiol 25: 304–311

    Article  PubMed  CAS  Google Scholar 

  • Sommer B, Keinanen K, Verdoorn TA, Wisden W, Burnashev N, Herb A, Kohler M, Takagi T, Sakmann B, Seeburg PH (1990) Flip and flop: a cell-specific functional switch in glutamate-operated channels of the CNS. Science 249: 1580–1585

    Article  PubMed  CAS  Google Scholar 

  • Strack S, Barban MA, Wadzinski BE, Colbran RJ (1997a) Differential inactivation of postsynaptic density-associated and soluble Ca2+/calmodulin-dependent protein kinase II by protein phosphatases 1 and 2 A. J Neurochem 68: 2119–2128

    Article  PubMed  CAS  Google Scholar 

  • Strack S, Choi S, Lovinger DM, Colbran RJ (1997b) Translocation of autophosphorylated calcium/calmodulin-dependent protein kinase II to the postsynaptic density. J Biol Chem 272: 13467–13470

    Article  PubMed  CAS  Google Scholar 

  • Strack S, Westphal RS, Colbran RJ, Ebner FF, Wadzinski BE (1997c) Protein serine/threonine phosphatase 1 and 2 A associate with and dephosphorylate neurofilaments. Brain Res Mol Brain Res 49: 15–28

    Article  PubMed  CAS  Google Scholar 

  • Strack S, Zaucha JA, Ebner FF, Colbran RJ, Wadzinski BE (1998) Brain protein phosphatase 2 A: developmental regulation and distinct cellular and subcellular localization by B subunits. J Comp Neurol 392: 515–527

    Article  PubMed  CAS  Google Scholar 

  • Staubli U, Chun D (1996) Factors regulating the reversibility of long-term potentiation. J Neurosci 15: 853–860

    Google Scholar 

  • Tan S-E, Wenthold RJ, Soderling TR (1994) Phosphorylation of AMPA-type glutamate receptors by calcium/calmodulin-dependent protein kinase II and protein kinase C in cultured hippocampal neurons. J Neurosci 14: 1123–1129

    PubMed  CAS  Google Scholar 

  • Thomas MJ, Moody TD, Makhinson M, O’Dell TJ (1996) Activity-dependent /3-adrenergic modulation of low frequency stimulation induced LTP in the hippocampal CAl region. Neuron 17: 475–482

    Article  PubMed  CAS  Google Scholar 

  • Vereb G, Gergely P (1989) The role of autophosphorylation of cAMP-dependent protein kinase II in the inhibition of protein phosphatase-1. Int J Biochem 21: 1137–41

    Article  PubMed  CAS  Google Scholar 

  • Wang J-H, Kelly PT (1995) Postsynaptic injection of Cat+/CaM induces synaptic potentiation requiring CaMKII and PKC activity. Neuron 15: 443–452

    Article  PubMed  Google Scholar 

  • Wang L-Y, Dudek EM, Browning MD, MacDonald JF (1994) Modulation of AMPA/kainate receptors in cultured murine hippocampal neurones by protein kinase C. J Physiol 475.3: 431–437

    Google Scholar 

  • Wang L-Y, Salter MW, MacDonald JF (1991) Regulation of kainate receptors by cAMP-dependent protein kinase and phosphatases. Science 253: 1132–1135

    Article  PubMed  CAS  Google Scholar 

  • Wenthold RJ, Petralia RS, Blahos II J, Niedzielski AS (1996) Evidence for multiple AMPA receptor complexes in hippocampal CA1/CA2 neurons. J Neurosci 16: 1982–1989

    PubMed  CAS  Google Scholar 

  • Wenthold RJ, Tokotani N, Doi K, Wada K (1992) Immunochemical characterization of the non-NMDA glutamate receptor using subunit-specific antibodies. J Biol Chem 267: 501–507

    PubMed  CAS  Google Scholar 

  • Wo ZG, Oswald RE (1994) Transmembrane topology of two kainate receptor subunits revealed by N-glycosylation. Proc Natl Acad Sci USA 91: 7154–7158

    Article  PubMed  CAS  Google Scholar 

  • Wo ZG, Oswald RE (1995) Unraveling the modular design of glutamate-gated ion channels. Trends Neurosci 18: 161–168

    Article  PubMed  CAS  Google Scholar 

  • Wood MW, VanDongen HMA, VanDongen AMJ (1995) Structural conservation of ion conduction pathways in K channels and glutamate receptors. Proc Natl Acad Sci USA 92: 4882–4886

    Article  PubMed  CAS  Google Scholar 

  • Wyllie DJA, Nicoll RA (1994) A role for protein kinases and phosphatases in the Cat+-induced enhancement of hippocampal AMPA receptor-mediated synaptic responses. Neuron 13: 635–643

    Article  PubMed  CAS  Google Scholar 

  • Yakel JL, Vissavajjhala P, Derkach VA, Brickey DA, Soderling TR (1995) Identification of a CaZ+/calmodulin-dependent protein kinase II regulatory phosphorylation site in non-N-methyl-D-aspartate glutamate receptors. Proc Natl Acad Sci USA 92: 1376–1380

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lee, HK., Huganir, R.L. (1999). Phosphorylation of Glutamate Receptors. In: Jonas, P., Monyer, H. (eds) Ionotropic Glutamate Receptors in the CNS. Handbook of Experimental Pharmacology, vol 141. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-08022-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-08022-1_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08539-0

  • Online ISBN: 978-3-662-08022-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics