Skip to main content

Structure of Ionotropic Glutamate Receptors

  • Chapter

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 141))

Abstract

By 1987, all of the major ligand-gated ion-channel families had succumbed to cloning efforts, with one notable exception, the glutamate receptors. Acetylcholine receptors had been cloned first, aided by the fact that these proteins bind α-bungarotoxin with high specificity and affinity, and that they are highly concentrated in the muscle tissue of the electric fish Torpedo californica and Torpedo marmorata. This had allowed protein purification followed by partial microsequencing (Devillers-Thiery et al. 1979; Raftery et al. 1980) as well as generation of antibodies (Tzartos and Lindstrom 1980). The resulting information and analytical tools, in turn, had been used to screen cDNA libraries with amino acid sequence-derived oligonucleotide probes and antibodies which, in 1982, had led to the isolation of the first cDNA clones for acetylcholine receptors (BALLIVET et al. 1982; Giraudat et al. 1982; Noda et al. 1982; Sumikawa et al. 1982). A glycine receptor cDNA had been isolated in 1987 by taking advantage of the specific high-affinity binding of the competitive antagonist strychnine to the receptor. This allowed isolation and partial microsequencing of a strychnine-binding protein (Pfeiffer et al. 1982), providing sequence information to construct specific oligonucleotide probes, which were then used to isolate the glycine receptor cDNA (Grenningloh et al. 1987). γ-Aminobutyric acid (GABA)A receptors were also cloned in 1987, via low-stringency hybridization screening based on oligonucleotide sequence derived from the partial amino acid sequence of a protein purified by benzodiazepine-affinity chromatography (Schofield et al. 1987).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   429.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   549.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams MD, Oxender DL (1989) Bacterial periplasmic binding protein tertiary structures. J Biol Chem 264: 15739–15742

    CAS  PubMed  Google Scholar 

  • Adams SL, Foldes RL, Kamboj RK (1995) Human N-methyl-D-aspartate receptor modulatory subunit hNR3: cloning and sequencing of the cDNA and primary structure of the protein. Biochim Biophys Acta 1260: 105–108

    Article  PubMed  Google Scholar 

  • Akbarian S, Smith MA, Jones EG (1995) Editing for an AMPA receptor subunit RNA in prefrontal cortex and striatum in Alzheimer’s disease, Huntington’s disease and schizophrenia. Brain Res 699: 297–304

    Google Scholar 

  • Anantharam V, Panchal RG, Wilson A, Kolchine VV, Treistman SN, Bayley H (1992) Combinatorial RNA splicing alters the surface charge on the NMDA receptor. FEBS Lett 305: 27–30

    Article  CAS  PubMed  Google Scholar 

  • Araki K, Meguro H, Kushiya E, Takayama C, Inoue Y, Mishina M (1993) Selective expression of the glutamate receptor channel 52 subunit in cerebellar Purkinje cells. Biochem Biophys Res Comm 197: 1267–1276

    Article  CAS  PubMed  Google Scholar 

  • Arvola M, Keinänen K (1996) Characterization of the ligand binding domains of glutamate receptor (GluR)-B and GluR-D subunits expressed in Escherichia coli as periplasmic proteins. J Biol Chem 271: 15527–15532

    Article  CAS  PubMed  Google Scholar 

  • Bai G, Kusiak JW (1993) Cloning and analysis of the 5’ flanking sequence of the rat N-methyl-D-aspartate receptor-1 (NMDAR1) gene. Biochim Biophys Acta 1152: 197–200

    Article  CAS  PubMed  Google Scholar 

  • Bai G, Kusiak JW (1995) Functional analysis of the proximal 5’-flanking region of the N-methyl-D-aspartate receptor subunit gene, NMDAR1. J Biol Chem 270: 7737–7744

    CAS  PubMed  Google Scholar 

  • Ballivet M, Patrick J, Lee J, Heinemann S (1982) Molecular cloning of cDNA coding for the y subunit of Torpedo acetylcholine receptor. Proc Natl Acad Sci (USA) 79: 4466–4470

    Article  CAS  Google Scholar 

  • Barnard EA, Darlison MG, Seeburg P (1987) Molecular biology of the GABAA receptor: The receptor/channel superfamily. Trends Neurosci 10: 502–508

    Google Scholar 

  • Barria A, Derkach V, Soderling T (1997) Identification of the Ca2+/calmodulindependent protein kinase II regulatory phosphorylation site in the a-amino-3hydroxyl-5-methyl-4-isoxazole-propionate-type glutamate receptor. J Biol Chem 272: 32727–32730

    Article  CAS  PubMed  Google Scholar 

  • Behe P, Stern P, Wyllie DJA, Nassar M, Schoepfer R, Colquhoun D (1995) Determination of NMDA NR1 subunit copy number in recombinant NMDA receptors. Proc R Soc Lond Biol 262: 205–213

    Article  CAS  Google Scholar 

  • Benne R, Van Den Burg J, Brakenhoff JPJ, Sloof P, Van Boom JH, Tromp MC (1986) Major transcript of the frameshift cox/7 from trypanosome mitochondria contains four nucleotides that are not encoded in the DNA. Cell 46: 819–826

    Article  CAS  PubMed  Google Scholar 

  • Bennett JA, Dingledine R (1995) Topology profile for a glutamate receptor: Three transmembrane domains and a channel-lining reentrant membrane loop. Neuron 14: 373–384

    Google Scholar 

  • Bennett MK, Calakos N, Scheller RH (1992) Syntaxin: A synaptic protein implicated in docking of synaptic vesicles at presynaptic active zones. Science 257: 255–259

    Google Scholar 

  • Bettler B, Boulter J, Hermans-Borgmeyer I, O’Shea-Greenfield A, Deneris ES, Moll C

    Google Scholar 

  • Borgmeyer U, Hollmann M, Heinemann S (1990) Cloning of a novel glutamate receptor subunit, G1uR5: expression in the nervous system during development. Neuron 5: 583–595

    Article  PubMed  Google Scholar 

  • Bettler B, Egebjerg J, Sharma G, Pecht G, Hermans-Borgmeyer I, Moll C, Stevens CF, Heinemann S (1992) Cloning of a putative glutamate receptor: A low affinity kainate binding subunit. Neuron 8: 257–265

    Google Scholar 

  • Bettler B, Mulle C (1995) Neurotransmitter receptors. 2. AMPA and kainate receptors. Neuropharmacology 34: 123–139

    Google Scholar 

  • Betz H (1991) Glycine receptors: Heterogeneous and widespread in the mammalian brain. Trends Neurosci 14: 458–461

    Article  CAS  PubMed  Google Scholar 

  • Betz H, Schuster C, Ultsch A, Schmitt B (1993) Molecular biology of ionotropic glutamate receptors in Drosophila melanogaster. Trends Pharmacol Sci 14: 428–431

    Article  CAS  PubMed  Google Scholar 

  • Blackstone CD, Moss SJ, Martin LJ, Levey AI, Price DL, Huganir RL (1992) Biochemical characterization and localization of a non-N-methyl-D-aspartate glutamate receptor in rat brain. J Neurochem 58: 1118–1126

    Article  CAS  PubMed  Google Scholar 

  • Blahos JI, Wenthold RJ (1996) Relationship between N-methyl-D-aspartate receptor NR1 splice variants and NR2 subunits. J Biol Chem 271: 15669–15674

    Article  CAS  PubMed  Google Scholar 

  • Bottai D, Maler L, Dunn RJ (1998) Alternative RNA splicing of the NMDA receptor NR1 mRNA in the neurons of the teleost electrosensory system. J Neurosci 18: 5191–5202

    CAS  PubMed  Google Scholar 

  • Boulter J (1994a) Nucleotide sequence of rat glutamate receptor subunit gene Deltal. GenBank U08255. Unpublished sequence

    Google Scholar 

  • Boulter J (1994b) Nucleotide sequence of rat glutamate receptor subunit gene Delta2. GenBank U08256. Unpublished sequence

    Google Scholar 

  • Boulter J (1994c) Nucleotide sequence of rat glutamate receptor subunit gene KAl. GenBank U08257. Unpublished sequence

    Google Scholar 

  • Boulter J (1994d) Nucleotide sequence of rat glutamate receptor subunit gene KA2. GenBank U08258.. Unpublished sequence

    Google Scholar 

  • Boulter J (1994e) Nucleotide sequence of rat NMDA receptor subunit gene NMDAR2 C. GenBank U08259. Unpublished sequence

    Google Scholar 

  • Boulter J (1994f) Nucleotide sequence of rat NMDA receptor subunit gene NMDAR2D. GenBank U08260. Unpublished sequence

    Google Scholar 

  • Boulter J (1997) Nucleotide sequence of rat NMDA receptor gene NMDAR2 A. GenBank AF001423. Unpublished sequence

    Google Scholar 

  • Boulter J, Hollmann M, O’Shea-Greenfield A, Hartley M, Deneris ES, Maron C, Heinemann S (1990) Molecular cloning and functional expression of glutamate receptor subunit genes. Science 249: 1033–1037

    Article  CAS  PubMed  Google Scholar 

  • Brett PM, Le Bourdelles B, See CG, Whiting PJ, Attwood J, Woodward K, Robertson MM, Kalsi G, Povey S, Gurling HMD (1994) Genomic cloning and localization by fish and linkage analysis of the human gene encoding the primary subunit NMDAR1 (grin1) of the NMD A receptor channel. Ann Hum Genet 58: 95–100

    Article  CAS  PubMed  Google Scholar 

  • Brimecombe JC, Boeckman FA, Aizenman E (1997) Functional consequences of NR2 subunit composition in single recombinant N-methyl-D-aspartate receptors. Proc Natl Acad Sci (USA) 94: 11019–11024

    Article  CAS  Google Scholar 

  • Brockie PJ, Madsen DM, Maricq AV (1997) Genetic analysis of two C. elegans putative NMDA receptor subunits, nmr-1 and nmr-2. Soc Neurosci Abstr 23: 936

    Google Scholar 

  • Brose N (1993) Membrane fusion takes excitatory turn: syntaxin, vesicle docking protein, or glutamate receptor. Cell 75: 1043–1044

    Article  CAS  PubMed  Google Scholar 

  • Brose N, Gasic GP, Vetter DE, Sullivan JM, Heinemann SF (1993) Protein chemical characterization and immunocytochemical localization of the NMDA receptor subunit NMDAR1. J Biol Chem 268: 22663–22671

    CAS  PubMed  Google Scholar 

  • Brose N, Huntley GW, Stern-Bach Y, Sharma G, Morrison JH, Heinemann SF (1994) Differential assembly of coexpressed glutamate receptor subunits in neurons of rat cerebral cortex. J Biol Chem 269: 16780–16784

    CAS  PubMed  Google Scholar 

  • Brusa R, Zimmermann F, Koh D-S, Feldmeyer D, Gass P, Seeburg PH, Sprengel R (1995) Early-onset epilepsy and postnatal lethality associated with an editing-deficient GluR-B allele in mice. Science 270: 1677–1680

    Article  CAS  PubMed  Google Scholar 

  • Bull L (1998) Versuche zur Klonierung von ugetierhomologen der Familie der Kainatbindeproteine sowie Klonierung eines Kainatbindeproteins aus Xenopus laevis. Diploma Thesis, University of Göttingen, Göttingen

    Google Scholar 

  • Buller AL, Monaghan DT (1997) Pharmacological heterogeneity of NMDA receptors: characterization of NR1a/NR2D heteromers expressed in Xenopus oocytes. Eur J Pharmacol 320: 87–94

    Article  CAS  PubMed  Google Scholar 

  • Burnashev N, Monyer H, Seeburg PH, Sakmann B (1992) Divalent ion permeability of AMPA receptor channels is dominated by the edited form of a single subunit. Neuron 8: 189–198

    Article  CAS  PubMed  Google Scholar 

  • Burnashev N, Villarroel A, Sakmann B (1996) Dimensions and ion selectivity of recombinant AMPA and kainate receptor channels and their dependence on Q/R site residues. J Physiol (Lond) 496: 165–173

    CAS  Google Scholar 

  • Chang HM, Wu YM, Chang YC, Hsu YC, Hsu HY, Chen YC, Chow WY (1998) Molecular and electrophysiological characterizations of fGluR3a, an ionotropic glutamate receptor subunit of a teleost fish. Mol Brain Res 57: 211–220

    Article  CAS  PubMed  Google Scholar 

  • Chazot PL, Cik M, Stephenson FA (1995) An investigation into the role of N-glycosylation in the functional expression of a recombinant heteromeric NMDA receptor. Mol Membr Biol 12: 331–337

    Article  CAS  PubMed  Google Scholar 

  • Chazot PL, Cik M, Stephenson FA (1996) Evidence for at least two NR1 subunits per NMDA receptor as deduced from the radioligand binding properties of wild-type and mutant NR1/NR2a receptors. Br J Pharmacol 117: 68 P

    Google Scholar 

  • Chazot PL, Coleman SK, Cik M, Stephenson FA (1994) Molecular characterization of N-methyl-D-aspartate receptors expressed in mammalian cells yields evidence for the coexistence of 3 subunit types within a discrete receptor molecule. J Biol Chem 269: 24403–24409

    CAS  PubMed  Google Scholar 

  • Chazot PL, Stephenson FA (1997a) Biochemical evidence for the existence of a pool of unassembled C2 exon-containing NR1 subunits of the mammalian forebrain NMDA receptor. J Neurochem 68: 507–516

    Article  CAS  PubMed  Google Scholar 

  • Chazot PL, Stephenson FA (1997b) Molecular dissection of native mammalian forebrain NMDA receptors containing the NR1 C2 exon: direct demonstration of NMDA receptors comprising NR1, NR2A, and NR2B subunits within the same complex. J Neurochem 69: 2138–2144

    Article  CAS  PubMed  Google Scholar 

  • Chen GQ, Sun Y, Jin RS, Gouaux E (1998) Probing the ligand binding domain of the G1uR2 receptor by proteolysis and deletion mutagenesis defines domain boundaries and yields a crystallizable construct. Protein Science 7: 2623–2630

    Article  CAS  PubMed  Google Scholar 

  • Chittajallu R, Braithwaite SP, Clarke VRJ, Henley JM (1999) Kainate receptors: subunits, synaptic localization and function. Trends Pharmacol Sci 20: 19–26

    Article  Google Scholar 

  • Ciabarra AM, Sullivan JM, Gahn LG, Pecht G, Heinemann S, Sevarino KA (1995) Cloning and characterization of Chi-1: A developmentally regulated member of a novel class of the ionotropic glutamate receptor family. J Neurosci 15: 64986508

    Google Scholar 

  • Cleland TA (1996) Inhibitory glutamate receptor channels. Mol Neurobiol 13:97–136 Cockcroft VB, Orteils MO, Thomas P, Lunt GG (1993) Homologies and disparities of glutamate receptors: A critical analysis. Neurochem Int 23: 583–594

    Google Scholar 

  • Collingridge GL, Lester RAJ (1989) Excitatory amino acid receptors in the vertebrate central nervous system. Pharmacol Rev 41: 143–210

    CAS  PubMed  Google Scholar 

  • Collins C, Duff C, Duncan AMV, Planells-Cases R, Sun W, Norremolle A, Michaelis E, Montal M, Worton R, Hayden MR (1993) Mapping of the human NMDA receptor subunit (NMDAR1) and the proposed NMDA receptor glutamate binding subunit (NMDARA1) to chromosome-9q34.3 and chromosome-8, respectively. Genomics 17: 237–239

    Article  CAS  PubMed  Google Scholar 

  • Conn PJ, Pin JP (1997) Pharmacology and functions of metabotropic glutamate receptors. Annu Rev Pharmacol Toxicol 37: 205–237

    Article  CAS  PubMed  Google Scholar 

  • Cotman CW, Monaghan DT, Ottersen OP, Storm-Mathisen J (1987) Anatomical organization of excitatory amino acid receptors and their pathways. Trends Neurosci 10: 273–279

    Article  CAS  Google Scholar 

  • Craig AM, Blackstone CD, Huganir RL, Banker G (1993) The distribution of glutamate receptors in cultured rat hippocampal neurons: postsynaptic clustering of AMPA-selective subunits. Neuron 10: 1055–1068

    Article  CAS  PubMed  Google Scholar 

  • Cully DF, Paress PS, Liu KK, Schaeffer JM, Arena JP (1996) Identification of a Drosophila melanogaster glutamate-gated chloride channel sensitive to the antiparasitic agent avermectin. J Biol Chem 271: 20187–20191

    Article  CAS  PubMed  Google Scholar 

  • Cully DF, Vassilatis DK, Liu KK, Paress PS, Vanderploeg LHT, Schaeffer JM, Arena JP (1994) Cloning of an avermectin-sensitive glutamate-gated chloride channel from Caenorhabditis elegans. Nature 371: 707–711

    Article  CAS  PubMed  Google Scholar 

  • Daggett LP, Jachec C, Lin F-F, C. D, Varney MA, Hess SD, Velicelebi G, Johnson EC (1996) Functional characterization of two isoforms of the human G1uR6 receptor and distribution of G1uR6 RNA editing sites. Soc Neurosci Abstr 22: 590

    Google Scholar 

  • Daggett LP, Johnson EC, Varney MA, Lin FF, Hess SD, Deal CR, Jachec C, Lu CC, Kerner JA, Landwehrmeyer GB, Standaert DG, Young AB, Harpold MM, Velicelebi G (1998) The human N-methyl-D-aspartate receptor 2 C subunit: genomic analysis, distribution in human brain, and functional expression. J Neurochem 71: 1953–1968

    Article  CAS  PubMed  Google Scholar 

  • Darlison MG (1992) Invertebrate GABA and glutamate receptors: molecular biology reveals predictable structures but some unusual pharmacologies. Trends Neurosci 15: 469–474

    Article  CAS  PubMed  Google Scholar 

  • Das S, Sasaki YF, Rothe T, Premkumar LS, Takasu M, Crandall JE, Dikkes P, Conner DA, Rayudu PV, Cheung W, Chen HSV, Lipton SA, Nakanishi N (1998) Increased NMDA current and spine density in mice lacking the NMDA receptor subunit NR3 A. Nature 393: 377–381

    Article  CAS  PubMed  Google Scholar 

  • Delany NS, Laughton DL, Wolstenholme AI (1997) GenBank Y09796. Unpublished sequence

    Google Scholar 

  • Dent JA, Davis MW, Avery L (1997) Avr-15 encodes a chloride channel subunit that mediates inhibitory glutamatergic neurotransmission and ivermectin sensitivity in Caenorhabditis elegans. EMBO J 16: 5867–5879

    Article  CAS  PubMed  Google Scholar 

  • Devereux J, Haeberli P, Smithies 0 (1984) A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res 12: 387–395

    CAS  Google Scholar 

  • Devillers-Thiery A, Changeux JP, Paroutaud P, Strosberg AD (1979) The amino-terminal sequence of the 40000 molecular weight subunit of the acetylcholine receptor protein from Torpedo marmorata. FEBS Lett 104: 99–105

    Article  CAS  PubMed  Google Scholar 

  • Devillers-Thiery A, Galzi JL, Eisele JL, Bertrand S, Bertrand D, Changeux JP (1993) Functional architecture of the nicotinic acetylcholine receptor: a prototype of ligand-gated ion channels. J Membr Biol 136: 97–112

    Article  CAS  PubMed  Google Scholar 

  • Dunah AW, Luo JH, Wang YH, Yasuda RP, Wolfe BB (1998) Subunit composition of N-methyl-D-aspartate receptors in the central nervous system that contain the NR2D subunit. Mol Pharmacol 53: 429–437

    CAS  PubMed  Google Scholar 

  • Durand GM, Gregor P, Zheng X, Bennett MVL, Uhl GR, Zukin RS (1992) Cloning of an apparent splice variant of the rat N-methyl-D-aspartate receptor NMDAR1 with altered sensitivity to polyamines and activators of protein kinase C. Proc Natl Acad Sci (USA) 89: 9359–9363

    Article  CAS  Google Scholar 

  • Eaton MJ, Chen JW, Kumar KN, Cong Y, Michaelis EK (1990) Immunochemical characterization of brain synaptic membrane glutamate binding proteins. J Biol Chem 265: 16195–16204

    CAS  PubMed  Google Scholar 

  • Ebralidze AK, Rossi DJ, Tonegawa S, Slater NT (1996) Modification of NMDA receptor channels and synaptic transmission by targeted disruption of the NR2 C gene. J Neurosci 16: 5014–5025

    CAS  PubMed  Google Scholar 

  • Egebjerg J, Bettler B, Hermans-Borgmeyer I, Heinemann S (1991) Cloning of a cDNA for a glutamate receptor subunit activated by kainate but not AMPA. Nature 351: 745–748

    Article  CAS  PubMed  Google Scholar 

  • Eubanks JH, Puranam RS, Kleckner NW, Bettler B, Heinemann SF, McNamara JO (1993) The gene encoding the glutamate receptor subunit G1uR5 is located on human chromosome 21g21.1–22.1 in the vicinity of the gene for familial amyotrophic lateral sclerosis. Proc Natl Acad Sci (USA) 90: 178–182

    Article  CAS  Google Scholar 

  • Everts I, Villmann C, Hohmann M (1997) N-glycosylation is not a prerequisite for glutamate receptor function but is essential for lectin modulation. Mol Pharmacol 52: 861–873

    CAS  PubMed  Google Scholar 

  • Everts I, Petroski R, Kizelsztein P, Teichberg VI, Heinemann SF, Hollmann M (1999) Lectin-induced inhibition of desensitization of the kainate receptor G1uR6 depends on the activation state and can be mediated by a single native or ectopic N-linked carbohydrate side chain. J Neurosci 19: 916–927

    CAS  PubMed  Google Scholar 

  • Ferrer-Montiel AV, Montal M (1996) Pentameric subunit stoichiometry of a neuronal glutamate receptor. Proc Natl Acad Sci (USA) 93: 2741–2744

    Article  CAS  Google Scholar 

  • Fletcher EJ, Nutt SL, Hoo KH, Elliott CE, Korczak B, McWhinnie EA, Kamboj RK (1995) Cloning, expression and pharmacological characterization of a human glutamate receptor: hGluR4. Receptors Channels 3: 21–31

    CAS  PubMed  Google Scholar 

  • Foldes RL, Adams SL, Fantaske RP, Kamboj RK (1994a) Human N-methyl-D-aspartate receptor modulatory subunit hNR2 A: cloning and sequencing of the cDNA and primary structure of the protein. Biochim Biophys Acta 1223: 155–159

    Article  CAS  PubMed  Google Scholar 

  • Foldes RL, Rampersad V, Kamboj RK (1993) Cloning and sequence analysis of cDNAs encoding human hippocampus N-methyl-D-aspartate receptor subunits: evidence for alternative RNA splicing. Gene 131: 293–298

    Article  CAS  PubMed  Google Scholar 

  • Foldes RL, Rampersad V, Kamboj RK (1994b) Cloning and sequence analysis of additional splice variants encoding human N-methyl-D-aspartate receptor (hNR1) subunits. Gene 147: 303–304

    Article  CAS  PubMed  Google Scholar 

  • Forcina MS, Ciabarra AM, Sevarino KA (1995) Cloning of chi-2: a putative member of the ionotropic glutamate receptor superfamily. Soc Neurosci Abstr 21: 438. 433

    Google Scholar 

  • Forrest D, Yuzaki M, Soares HD, Ng L, Luk DC, Sheng M, Steward CL, Morgan JI, Connor JA, Curran T (1994) Targeted disruption of NMDA receptor 1 gene abolishes NMDA response and results in neonatal death. Neuron 13: 325–338

    Article  CAS  PubMed  Google Scholar 

  • Funabiki K, Mishina M, Hirano T (1995) Retarded vestibular compensation in mutant mice deficient in 82 glutamate receptor subunit. Neuroreport 7: 189–192

    CAS  PubMed  Google Scholar 

  • Funk GD, Johnson SM, Smith JC, Dong XW, Lai J, Feldman JL (1997) Functional respiratory rhythm generating networks in neonatal mice lacking NMDAR1 gene. J Neurophysiol 78: 1414–1420

    CAS  PubMed  Google Scholar 

  • Gallagher MJ, Huang H, Grant ER, Lynch DR (1997) The NR2B-specific interactions of polyamines and protons with the N-methyl-D-aspartate receptor. J Biol Chem 272: 24971–24979

    Article  CAS  PubMed  Google Scholar 

  • Gallo V, Upson LM, Hayes WP, Vyklicky L, Jr., Winters CA, Buonanno A (1992) Molecular cloning and developmental analysis of a new glutamate receptor subunit isoform in cerebellum. J Neurosci 12: 1010–1023

    CAS  PubMed  Google Scholar 

  • Giraudat J, Devillers-Thiery A, Auffray C, Rougeon F, Changeux JP (1982) Identification of a cDNA clone coding for the acetylcholine binding subunit of Torpedo marmorata acetylcholine receptor. EMBO J 1: 713–717

    CAS  PubMed  Google Scholar 

  • Goldman DJ (1994) GenBank U12018. Unpublished sequence

    Google Scholar 

  • Gray MW, et al. (1992) Transcription processing and editing in plant mitochondria. Annu Rev Plant Physiol Plant Mol Biol 43: 145–175

    Article  CAS  Google Scholar 

  • Gregor P, Gaston SM, Yang XD, Oregan JP, Rosen DR, Tanzi RE, Patterson D, Haines JL, Horvitz HR, Uhl GR, Brown RH (1994) Genetic and physical mapping of the G1uR5 glutamate receptor gene on human chromosome-21. Human Genetics 94: 565–570

    Article  CAS  PubMed  Google Scholar 

  • Gregor P, Mano I, Maoz I, McKeown M, Teichberg VI (1989) Molecular structure of the chick cerebellar kainate binding subunit of a putative glutamate receptor. Nature 342: 689–692

    Article  CAS  PubMed  Google Scholar 

  • Gregor P, O’Hara BF, Yang X, Uhl GR (1993a) Expression and novel isoforms of glutamate receptor genes G1uR5 and G1uR6. Neuroreport 4: 1343–1346

    Article  CAS  PubMed  Google Scholar 

  • Gregor P, Reeves RH, Jabs EW, Yang XD, Dackowski W, Rochelle JM, Brown RH

    Google Scholar 

  • Haines JL, O’Hara BF, Uhl GR, Seldin MF (1993b) Chromosomal localization of glutamate receptor genes: relationship to familial amyotrophic lateral sclerosis and other neurological disorders of mice and humans. Proc Natl Acad Sci (USA) 90: 3053–3057

    Article  Google Scholar 

  • Gregor P, Yang XD, Mano I, Takemura M, Teichberg VI, Uhl GR (1992) Organization and expression of the gene encoding chick kainate binding protein, a member of the glutamate receptor family. Mol Brain Res 16: 179–186

    Article  CAS  PubMed  Google Scholar 

  • Grenningloh G, Rienitz A, Schmitt B, Methfessel C, Zensen M, Beyreuther K, Gundelfinger ED, Betz H (1987) The strychnine binding subunit of the glycine receptors shows homology with nicotinic acetylcholine receptors. Nature 328: 215–220

    Article  CAS  PubMed  Google Scholar 

  • Grimwood S, Le Bourdelles B, Atack JR, Barton C, Cockett W, Cook SM, Gilbert E, Hutson PH, McKernan RM, Myers J, Ragan CI, Wingrove PB, et al. (1996a) Generation and characterization of stable cell lines expressing recombinant human Nmethyl-D-aspartate receptor subtypes. J Neurochem 66: 2239–2247

    Article  CAS  PubMed  Google Scholar 

  • Grimwood S, Le Bourdelles B, Cockett W, Atack J, Hutson PH, Whiting PJ (1996b) Homomeric and heteromeric NMDA receptor subunit assemblies can coexist within the same stable cell line. Br J Pharmacol 117: 61 P

    Google Scholar 

  • Grimwood S, Le Bourdelles B, Whiting PJ (1995) Recombinant human NMDA homomeric NR1 receptors expressed in mammalian cells form a high-affinity glycine antagonist binding site. J Neurochem 64: 525–530

    Article  CAS  PubMed  Google Scholar 

  • Hall RA, Hansen A, Andersen PH, Soderling TR (1997) Surface expression of the AMPA receptor subunits G1uR1, G1uR2, and G1uR4 in stably transfected baby hamster kidney cells. J Neurochem 68: 625–630

    Article  CAS  PubMed  Google Scholar 

  • Harvey RJ, Stühmer T, Van Minnen J, Darlison MG (1997) Differential patterns of expression of two novel invertebrate (Lymnaea stagnalis) ionotropic glutamate receptor genes. Neurosci Res Commun 20: 31–40

    Article  CAS  Google Scholar 

  • Herb A, Burnashev N, Werner P, Sakmann B, Wisden W, Seeburg PH (1992) The KA-2 subunit of excitatory amino acid receptors shows widespread expression in brain and forms ion channels with distantly related subunits. Neuron 8: 775–785

    Article  CAS  PubMed  Google Scholar 

  • Hess SD, Daggett LP, Crona J, Deal C, Lu CC, Urrutia A, Chavez-Noriega L, Ellis SB, Johnson EC, Velicelebi G (1996) Cloning and functional characterization of human heteromeric N-methyl-D-aspartate receptors. J Pharmacol Exp Ther 278: 808–816

    CAS  PubMed  Google Scholar 

  • Hess SD, Daggett LP, Deal C, Lu CC, Johnson EC, Velicelebi G (1998) Functional characterization of human N-methyl-D-aspartate subtype la/2D receptors. J Neurochem 70: 1269–1279

    Article  CAS  PubMed  Google Scholar 

  • Hieber VC, Goldman D (1995) Trans-synaptic regulation of NMDA receptor RNAs during optic nerve regeneration. J Neurosci 15: 5286–5296

    CAS  PubMed  Google Scholar 

  • Higuchi M, Single FN, Kohler M, Sommer B, Sprengel R, Seeburg PH (1993) RNA editing of AMPA receptor subunit GluR-B: a base-paired intron-exon structure determines position and efficiency. Cell 75: 1361–1370

    Article  CAS  PubMed  Google Scholar 

  • Hirai H, Kirsch J, Laube B, Betz H, Kuhse J (1996) The glycine binding site of the Nmethyl-D-aspartate receptor subunit NR1: Identification of novel determinants of co-agonist potentiation in the extracellular M3–M4 loop region. Proc Natl Acad Sci (USA) 93: 6031–6036

    Article  CAS  Google Scholar 

  • Hirano T, Kasono K, Araki K, Mishina M (1995) Suppression of LTD in cultured Purkinje cells deficient in the glutamate receptor 52 subunit. Neuroreport 6: 524–526

    Article  CAS  PubMed  Google Scholar 

  • Hollmann M (1996) The topology of glutamate receptors: Sorting through the domains. In: Monaghan DT, Wenthold R (eds) The Ionotropic Glutamate Receptors. Humana Press, Totowa, New Jersey, pp 39–79

    Google Scholar 

  • Hollmann M, Boulter J, Maron C, Beasley L, Sullivan J, Pecht G, Heinemann S (1993) Zinc potentiates agonist-induced currents at certain splice variants of the NMDA receptor. Neuron 10: 943–954

    Article  CAS  PubMed  Google Scholar 

  • Hollmann M, Hartley M, Heinemann S (1991) Calcium permeability of KA-AMPA gated glutamate receptor channels depends on subunit composition. Science 252: 851–853

    Article  CAS  PubMed  Google Scholar 

  • Hohmann M, Heinemann S (1994) Cloned glutamate receptors. Annu Rev Neurosci 17: 31–108

    Article  Google Scholar 

  • Hohmann M, Maron C, Heinemann S (1994) N-glycosylation site tagging suggests a three transmembrane domain topology for the glutamate receptor G1uR1. Neuron 13: 1331–1343

    Article  Google Scholar 

  • Hohmann M, O’Shea-Greenfield A, Rogers SW, Heinemann S (1989) Cloning by functional expression of a member of the glutamate receptor family. Nature 342: 643648

    Google Scholar 

  • Hollmann M, Rogers SW, O’Shea-Greenfield A, Deneris ES, Hughes TE, Gasic GP, Heinemann S (1990) The glutamate receptor G1uR-Kl: Structure, function, and expression in the brain. Cold Spring Harbor Symp Quant Biol 55: 41–55

    Google Scholar 

  • Honore T (1989) Excitatory amino acid receptor subtypes and specific antagonists. Med Res Rev 9: 1–23

    Article  CAS  PubMed  Google Scholar 

  • Hoo KH, Nutt SL, Fletcher EJ, Elliott CE, Korczak B, Deverill RM, Rampersad V, Fantaske RP, Kamboj RK (1994) Functional expression and pharmacological characterization of the human EAA4 (GluR6) glutamate receptor: a kainate selective channel subunit. Receptors Channels 2: 327–337

    CAS  PubMed  Google Scholar 

  • Howe JR (1996) Homomeric and heteromeric ion channels formed from the kainatetype subunits G1uR6 and KA2 have very small, but different, unitary conductances. J Neurophysiol 76: 510–519

    CAS  PubMed  Google Scholar 

  • Hu W, Zuo J, Dejager PL, Heintz N (1998) The human glutamate receptor delta2 gene (GRID2) maps to chromosome 4q22. Genomics 47: 143–145

    Article  CAS  PubMed  Google Scholar 

  • Huang F, Gallo V (1997) Gene structure of the rat kainate receptor subunit KA2 and characterization of an intronic negative regulatory region. J Biol Chem 272: 8618–8627

    Article  CAS  PubMed  Google Scholar 

  • Hullebroeck MF, Hampson DR (1992) Characterization of the oligosaccharide side chains on kainate binding proteins and AMPA receptors. Brain Res 590: 187192

    Google Scholar 

  • Hume RI, Dingledine R, Heinemann SF (1991) Identification of a site in glutamate receptor subunits that controls calcium permeability. Science 253: 1028–1031

    Article  CAS  PubMed  Google Scholar 

  • Hutton ML, Harvey RJ, Barnard EA, Darlison MG (1991) Cloning of a cDNA that encodes an invertebrate glutamate receptor subunit. FEBS Lett 292: 111–114

    Article  CAS  PubMed  Google Scholar 

  • Ikeda K, Araki K, Takayama C, Inoue Y, Yagi T, Aizawa S, Mishina M (1995) Reduced spontaneous activity of mice defective in the E4 subunit of the NMDA receptor channel. Mol Brain Res 33: 61–71

    Article  CAS  PubMed  Google Scholar 

  • Ikeda K, Nagasawa M, Mori H, Araki K, Sakimura K, Watanabe M, Inoue Y, Mishina M (1992) Cloning and expression of the e4 subunit of the NMDA receptor channel. FEBS Lett 313: 34–38

    Article  CAS  PubMed  Google Scholar 

  • Ishii T, Moriyoshi K, Sugihara H, Sakurada K, Kadotani H, Yokoi M, Akazawa C, Shigemoto R, Mizuno N, Masu M, Nakanishi S (1993) Molecular characterization of the family of the N-methyl-D-aspartate receptor subunits. J Biol Chem 268: 2836–2843

    CAS  PubMed  Google Scholar 

  • Ishimaru H, Kamboj R, Ambrosini A, Henley JM, Soloviev MM, Sudan H, Rossier J, Abutidze K, Rampersad V, Usherwood PNR, Bateson AN, Barnard EA (1996) A unitary non-NMDA receptor short subunit from Xenopus: DNA cloning and expression. Receptors Channels 4: 31–49

    Google Scholar 

  • Ito I, Sakimura K, Mishina M, Sugiyama H (1996) Age-dependent reduction of hippocampal LTP in mice lacking N-methyl-D-aspartate receptor El subunit. Neurosci Lett 203: 69–71

    Article  CAS  PubMed  Google Scholar 

  • Iwasato T, Erzurumlu RS, Huerta PT, Chen DF, Sasaoka T, Ulupinar E, Tonegawa S (1997) NMDA receptor-dependent refinement of somatotopic maps. Neuron 19: 1201–1210

    Article  CAS  PubMed  Google Scholar 

  • Jagannathan S, Laughton DL, Skinner TM, Lunt GG, Wolstenholme AD (1998a) GenBank Y14233. Unpublished sequence

    Google Scholar 

  • Jagannathan S, Laughton DL, Skinner TM, Lunt GG, Wolstenholme AD (1998b) GenBank Y14234. Unpublished sequence

    Google Scholar 

  • Jia ZP, Agopyan N, Miu P, Xiong ZG, Henderson J, Gerlai R, Taverna FA, Velumian A, MacDonald J, Carlen P, Abramow-Newerly W, Roder J (1996) Enhanced LTP in mice deficient in the AMPA receptor GluR2. Neuron 17: 945–956

    Article  CAS  PubMed  Google Scholar 

  • Kadotani H, Hirano T, Masugi M, Nakamura K, Nakao K, Katsuki M, Nakanishi S (1996) Motor discoordination results from combined gene disruption of the NMDA receptor NR2 A and NR2 C subunits, but not from single disruption of the NR2 A or NR2 C subunit. J Neurosci 16: 7859–7867

    CAS  PubMed  Google Scholar 

  • Kadotani H, Namura S, Katsuura G, Terashima T, Kikuchi H (1998) Attenuation of focal cerebral infarct in mice lacking NMDA receptor subunit NR2 C. Neuroreport 9: 471–475

    Article  CAS  PubMed  Google Scholar 

  • Kalsi G, Whiting P, Le Bourdelles B, Callen D, Barnard EA, Gurling H (1998) Localization of the human NMDAR2D receptor subunit gene (GRIN2D) to 19g13.1qter, the NMDAR2 A subunit gene to 16p13.2 (GRIN2A), and the NMDAR2 C subunit gene (GRIN2C) to 17q24-q25 using somatic cell hybrid and radiation hybrid mapping panels. Genomics 47: 423–425

    Article  CAS  PubMed  Google Scholar 

  • Kamboj R, Elliott CE, Nutt SL (1996a) Kainate-binding human CNS glutamate receptors EAA3 C and EAA3D, DNA encoding them, and expression of the DNA in transformed cells. GenBank 125018. Patent US 5547855-A

    Google Scholar 

  • Kamboj R, Elliott CE, Nutt SL (1996b) Kainate-binding, human CNS receptors of the EAA4 family. GenBank I28906. Patent US 5574144-A

    Google Scholar 

  • Kamboj R, Nutt SL, Shekter L, Wosnick MA (1996c) Kainate-binding human CNS receptors of the EAA1 family. GenBank I28953. Patent US 5576205-A

    Google Scholar 

  • Kamboj R, Nutt SL, Shekter L, Wosnick MA (1996d) Kainate-binding, human CNS receptors of the EAA2 family. GenBank I17703. Patent US 5494792-A

    Google Scholar 

  • Kamboj RK, Schoepp DD, Nutt S, Shekter L, Korczak B, True RA, Rampersad V, Zimmerman DM, Wosnick MA (1994) Molecular cloning, expression, and pharmacological characterization of humEAA1, a human kainate receptor subunit. J Neurochem 62: 1–9

    Article  CAS  PubMed  Google Scholar 

  • Kamboj RK, Schoepp DD, Nutt S, Shekter L, Korczak B, True RA, Zimmerman DM, Wosnick MA (1992) Molecular structure and pharmacological characterization of humEAA2, a novel human kainate receptor subunit. Mol Pharmacol 42: 10–15

    CAS  PubMed  Google Scholar 

  • Kamphuis W, Da Silva FHL (1995) Editing status at the Q/R-site of glutamate receptor A subunit, B subunit, 5 subunit and 6 subunit messenger RNA in the hippocampal kindling model of epilepsy. Mol Brain Res 29: 35–42

    Article  CAS  PubMed  Google Scholar 

  • Kang C-H, Shin WC, Yamagata Y, Gokcen S, Ames GF-L, Kim SH (1991) Crystal structure of the lysine-, arginine-, ornithine-binding protein (LAO) from Salmonella typhimurium at 2.7-A resolution. J Biol Chem 266: 23893–23899

    CAS  PubMed  Google Scholar 

  • Karp SJ, Masu M, Eki T, Ozawa K, Nakanishi S (1993) Molecular cloning and chromosomal localization of the key subunit of the human N-methyl-D-aspartate receptor. J Biol Chem 268: 3728–3733

    CAS  PubMed  Google Scholar 

  • Kashiwabuchi N, Ikeda K, Araki K, Hirano T, Shibuki K, Takayama C, Inoue Y, Kutsuwada T, Yagi T, Kang Y, Aizawa S, Mishina M (1995) Impairment of motor coordination, Purkinje cell synapse formation, and cerebellar long term depression in G1uR 82 mutant mice. Cell 81: 245–252

    Article  CAS  PubMed  Google Scholar 

  • Kashiwagi K, Fukuchi J, Chao J, Igarashi K, Williams K (1996) An aspartate residue in the extracellular loop of the N-methyl-D-aspartate receptor controls sensitivity to spermine and protons. Mol Pharmacol 49: 1131–1141

    CAS  PubMed  Google Scholar 

  • Kashiwagi K, Pahk AJ, Masuko T, Igarashi K, Williams K (1997) Block and modulation of N-methyl-D-aspartate receptors by polyamines and protons: role of amino acid residues in the transmembrane and pore-forming regions of NR1 and NR2 subunits. Mol Pharmacol 52: 701–713

    CAS  PubMed  Google Scholar 

  • Kawamoto S, Hattori S, Sakimura K, Mishina M, Okuda K (1995) N-linked glycosylation of the a-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA)-selective glutamate receptor channel a2 subunit is essential for the acquisition of ligand binding activity. J Neurochem 64: 1258–1266

    Article  CAS  PubMed  Google Scholar 

  • Keinänen K, Arvola M, Kuusinen A, Johnson M (1997) Ligand recognition in glutamate receptors: insights from mutagenesis of the soluble a-amino-3-hydroxy-5methyl-4-isoxazole propionic acid (AMPA) binding domain of glutamate receptor type D ( G1uR-D ). Biochem Soc Trans 25: 835–838

    Google Scholar 

  • Keinänen K, Jouppila A, Kuusinen A (1998) Characterization of the kainate-binding domain of the glutamate receptor GIuR-6 subunit. Biochem J 330: 1461–1467

    PubMed  Google Scholar 

  • Keinänen K, Wisden W, Sommer B, Werner P, Herb A, Verdoorn TA, Sakmann B, Seeburg PH (1990) A family of AMPA-selective glutamate receptors. Science 249: 556–560

    Article  PubMed  Google Scholar 

  • Kimura N, Kurosawa N, Kondo K, Tsukada Y (1993) Molecular cloning of the kainatebinding protein and calmodulin genes which are induced by an imprinting stimulus in ducklings. Mol Brain Res 17: 351–355

    Article  CAS  PubMed  Google Scholar 

  • Kishimoto Y, Kawahara S, Kirino Y, Kadotani H, Nakamura Y, Ikeda M, Yoshioka T (1997) Conditioned eyeblink response is impaired in mutant mice lacking NMDA receptor subunit NR2 A. Neuroreport 8: 3717–3721

    Article  CAS  PubMed  Google Scholar 

  • Kiyama Y, Manabe T, Sakimura K, Kawakami F, Mori H, Mishina M (1998) Increased threshold for long-term potentiation and contextual learning in mice lacking the NMDA-type glutamate receptor el subunit. J Neurosci 18: 6704–6712

    CAS  PubMed  Google Scholar 

  • Klein M, Pieri I, Uhlmann F, Pfizenmaier K, Eisel U (1998) Cloning and characterization of promoter and 5’-UTR of the NMDA receptor subunit s2: evidence for alternative splicing of 5’ non-coding exon. Gene 208: 259–269

    Article  CAS  PubMed  Google Scholar 

  • Köhler M, Burnashev N, Sakmann B, Seeburg PH (1993) Determinants of Ca2+ permeability in both TM1 and TM2 of high affinity kainate receptor channels: diversity by RNA editing. Neuron 10: 491–500

    Article  PubMed  Google Scholar 

  • Köhler M, Kornau H-C, Seeburg PH (1994) The organization of the gene for the functionally dominant a-amino-3-hydroxy-5-methyl-isoxazole-4-propionic acid receptor subunit GIuR-B. J Biol Chem 269: 17367–17370

    PubMed  Google Scholar 

  • Kohda K, Kondo M, Tomomura M, Yuzaki M (1998) Characterization of d2 glutamate receptors by a mutation that causes channel activities. Soc Neurosci Abstr 24: 841

    Google Scholar 

  • Korczak B, Nutt SL, Fletcher EJ, Hoo KH, Elliott CE, Rampersad V, McWhinnie EA, Kamboj RK (1995) cDNA cloning and functional properties of human glutamate receptor EAA3 (G1uR5) in homomeric and heteromeric configuration. Receptors Channels 3: 41–49

    Google Scholar 

  • Krenz WD, Boulter J, Selverston AI, Heinemannn SF (1999) Tissue-specific alternative splicing of P loop-encoding exons in an invertebrate glutamate receptor subunit gene. submitted

    Google Scholar 

  • Kumar KN, Babcock KK, Johnson PS, Chen X, Ahmad M, Michaelis EK (1995a) Cloning of the cDNA for a brain glycine binding, glutamate binding and thienylcyclohexylpiperidine-binding protein. Biochem Biophys Res Comm 216: 390–398

    Article  CAS  PubMed  Google Scholar 

  • Kumar KN, Eggeman KT, Adams JL, Michaelis EK (1991a) Hydrodynamic properties of the purified glutamate-binding protein subunit of the N-methyl-D-aspartate receptor. J Biol Chem 266: 14947–14952

    CAS  PubMed  Google Scholar 

  • Kumar KN, Tilakaratne N, Johnson PS, Allen AE, Michaelis EK (1991b) Cloning of cDNA for the glutamate binding subunit of an NMDA receptor complex. Nature 354: 70–73

    Article  CAS  PubMed  Google Scholar 

  • Kumar KN, Johnson PS, Chen XY, Pal R, Ahmad M, Ragland T, Bigge C, Michaelis EK (1998) Cloning of a brain N-methyl-D-aspartate-and D,L-e-2- amino-4-propyl-5phosphono-3-pentanoic acid (CGP 39653)-binding protein. Biochem Biophys Res Comm 253: 463–469

    Article  CAS  PubMed  Google Scholar 

  • Kumar VM, John J, Govindaraju V, Khan NA, Raghunathan P (1996) Magnetic resonance imaging of NMDA-induced lesion of the medial preoptic area and changes in sleep, temperature and sex behavior. Neurosci Res 24: 207–214

    Article  Google Scholar 

  • Kuner T, Wollmuth LP, Karlin A, Seeburg PH, Sakmann B (1996) Structure of the NMDA receptor channel M2 segment inferred from the accessibility of substituted cysteines. Neuron 17: 343–352

    Article  CAS  PubMed  Google Scholar 

  • Kung S-S, Wu Y-M, Chow W-Y (1996) Characterization of two fish glutamate receptor cDNA molecules: absence of RNA editing at the Q/R site. Mol Brain Res 35: 119–130

    Article  CAS  PubMed  Google Scholar 

  • Kuramoto T, Maihara T, Masu M, Nakanishi S, Serikawa T (1994) Gene mapping of NMDA receptors and metabotropic glutamate receptors in the rat (Rattus norvegicus). Genomics 19: 358–361

    Article  CAS  PubMed  Google Scholar 

  • Kurihara H, Hashimoto K, Kano M, Takayama C, Sakimura K, Mishina M, Inoue Y, Watanabe M (1997) Impaired parallel fiber -* Purkinje cell synapse stabilization during cerebellar development of mutant mice lacking the glutamate receptor 82 subunit. J Neurosci 17: 9613–9623

    CAS  PubMed  Google Scholar 

  • Kurosawa N, Kondo K, Kimura N, Ikeda T, Tsukada Y (1994) Molecular cloning and characterization of avian N-methyl-D-aspartate receptor typel (NMDA-R1) gene. Neurochem Res 19: 575–580

    Article  CAS  PubMed  Google Scholar 

  • Kuryatov A, Laube B, Betz H, Kuhse J (1994) Mutational analysis of the glycine binding site of the NMDA receptor: Structural similarity with bacterial amino acid binding proteins. Neuron 12: 1291–1300

    Google Scholar 

  • Kutsuwada T, Kashiwabuchi N, Mori H, Sakimura K, Kushiya E, Araki K, Meguro H, Masaki H, Kumanishi T, Arakawa M, Mishina M (1992) Molecular diversity of the NMDA receptor channel. Nature 358: 36–41

    Article  CAS  PubMed  Google Scholar 

  • Kutsuwada T, Sakimura K, Manabe T, Takayama C, Katakura N, Kushiya E, Natsume R, Watanabe M, Inoue Y, Yagi T, Aizawa S, Arakawa M, Takahashi T, Nakamura Y, Mori H, Mishina M (1996) Impairment of suckling response, trigeminal neuronal pattern formation, and hippocampal LTD in NMDA receptor e2 subunit mutant mice. Neuron 16: 333–344

    Article  CAS  PubMed  Google Scholar 

  • Kuusinen A, Arvola M, Keinänen K (1995) Molecular dissection of the agonist binding site of an AMPA receptor. EMBO J 14: 6327–6332

    CAS  PubMed  Google Scholar 

  • Kyte J, Doolittle RF (1982) A simple method for displaying the hydrophobic character of a protein. J Mol Biol 157: 105–132

    Article  CAS  PubMed  Google Scholar 

  • Lam TT, Fu J, Li SH, Abler AS, Tso MOM (1995) N-methyl-D-aspartate (NMDA) induced apoptosis in rat retina. Invest Ophthalmol Visual Sci 36: S934–934

    Google Scholar 

  • Lamerdin JE, McCready PM, Skowronski E, Adamson AW, Burkhart-Schultz K, Gordon L, Kyle A, Ramirez M, Stilwagen S, Phan H, Velasco N, Garnes J, Danganan L, Poundstone P, Christensen M, Georgescu A, Avila J, Liu S, Attix C, Andreise T, Trankheim M, Amico-Keller G, Coefield J, Duarte S, Lucas S, Bruce R, Thomas P, Quan G, Kronmiller B, Arellano A, Montgomery M, Ow D, Nolan M, Trong S, Kobayashi A, Olsen AO, Carrano AV (1998) Sequence analysis of a 3.5 Mb contig in human 19p13.3 containing a serine protease gene cluster. GenBank AC004528. Unpublished sequence

    Google Scholar 

  • Lampinen M, Pentikainen O, Johnson MS, Keinanen K (1998) AMPA receptors and bacterial periplasmic amino acid-binding proteins share the ionic mechanism of ligand recognition. EMBO J 17: 4704–4711

    Article  CAS  PubMed  Google Scholar 

  • Laube B, Hirai H, Sturgess M, Betz H, Kuhse J (1997) Molecular determinants of agonist discrimination by NMDA receptor subunits: Analysis of the glutamate binding site on the NR2B subunit. Neuron 18: 493–503

    Article  CAS  PubMed  Google Scholar 

  • Laube B, Kuhse J, Betz H (1998) Evidence for a tetrameric structure of recombinant NMDA receptors. J Neurosci 18: 2954–2961

    CAS  PubMed  Google Scholar 

  • Laube B, Kuryatov A, Kuhse J, Betz H (1993) Glycine-glutamate interactions at the NMDA receptor: role of cysteine residues. FEBS Lett 335: 331–334

    Article  CAS  PubMed  Google Scholar 

  • Le BB, Myers JA, Whiting PJ (1994a) cDNAs encoding human NMDA-22A receptor subunit and isoforms of the human NMDA-R1 receptor subunit, transfected cell line expressing them. GenBank A38680. Patent WO 9411501-A

    Google Scholar 

  • Le BB, Myers JA, Whiting PJ (1994b) cDNAs encoding human NMDA-22A receptor subunit and isoforms of the human NMDA-R1 receptor subunit, transfected cell line expressing them. GenBank A38688. Patent WO 9411501-A

    Google Scholar 

  • Le Bourdelles B, Wafford KA, Kemp JA, Marshall G, Bain C, Wilcox AS, Sikela JM, Whiting PJ (1994) Cloning, functional coexpression, and pharmacological charac-

    Google Scholar 

  • terisation of human cDNAs encoding NMDA receptor NR1 and NR2 A subunits. J Neurochem 62:2091–2098

    Google Scholar 

  • Lewin AH, Sun GB, Fudala L, Navarro H, Zhou LM, Popik P, Faynsteyn A, Skolnick P (1998) Molecular features associated with polyamine modulation of NMDA receptors. J Med Chem 41: 988–995

    Article  CAS  PubMed  Google Scholar 

  • Lewis TB, Wood S, Michaelis EK, Dupont BR, Leach RJ (1996) Localization of a gene for a glutamate binding subunit of a NMDA receptor (GRINA) to 8q24. Genomics 32: 131–133

    Article  CAS  PubMed  Google Scholar 

  • Liman ER, Tytgat J, Hess P (1992) Subunit stoichiometry of a mammalian K+ channel determined by construction of multimeric cDNAs. Neuron 9: 861–871

    Article  CAS  PubMed  Google Scholar 

  • Lin YJ, Bovetto S, Carver JM, Giordano T (1996) Cloning of the cDNA for the human NMDA receptor NR2 C subunit and its expression in the central nervous system and periphery. Mol Brain Res 43: 57–64

    Article  CAS  PubMed  Google Scholar 

  • Lomeli H, Mosbacher J, Melcher T, Hoger T, Geiger JRP, Kuner T, Monyer H, Higuchi M, Bach A, Seeburg PH (1994) Control of kinetic properties of AMPA receptor channels by nuclear RNA editing. Science 266: 1709–1713

    Article  CAS  PubMed  Google Scholar 

  • Lomeli H, Sprengel R, Laurie DJ, Köhr G, Herb A, Seeburg PH, Wisden W (1993) The rat dl and d2 subunits extend the excitatory amino acid receptor family. FEBS Lett 315: 318–322

    Article  CAS  PubMed  Google Scholar 

  • Lomeli H, Wisden W, Köhler M, Keinänen K, Sommer B, Seeburg PH (1992) High-affinity kainate and domoate receptors in rat brain. FEBS Lett 307: 139143

    Google Scholar 

  • Lowe DL, Jahn K, Smith DO (1997) Glutamate receptor editing in the mammalian hippocampus and avian neurons. Mol Brain Res 48: 37–44

    Article  CAS  PubMed  Google Scholar 

  • Luo JH, Wang YH,Yasuda RP, Dunah AW, Wolfe BB (1997) The majority of N-methylD-aspartate receptor complexes in adult rat cerebral cortex contain at least 3 different subunits (NR1/NR2A/NR2B). Mol Pharmacol 51: 79–86

    CAS  Google Scholar 

  • Ly AM, Michaelis EK (1991) Solubilization, partial purification, and reconstitution of glutamate-activated and N-methyl-D-aspartate-activated cation channels from brain synaptic membranes. Biochemistry 30: 4307–4316

    Article  CAS  PubMed  Google Scholar 

  • Lynch DR, Anegawa NJ, Verdoorn T, Pritchett DB (1994) N-methyl-D-aspartate receptors: different subunit requirements for binding of glutamate antagonists, glycine antagonists, and channel-blocking agents. Mol Pharmacol 45: 540–545

    CAS  PubMed  Google Scholar 

  • Mach J, Kumar KN, Pal R, Huschenbett J, Michaelis E (1997) Cloning of a novel gene for a subunit of an NMDA receptor-like complex. Soc Neurosci Abstr 23: 936

    Google Scholar 

  • Madarnas AR, Henderson JT, Roder JC (1994) The NMDA receptor subunit 2B locus (NMDAR 2B) maps to the distal end of murine chromosome 6. Mamm Genome 5: 115–116

    Article  CAS  PubMed  Google Scholar 

  • Mano I, Lamed Y, Teichberg VI (1996) A venus flytrap mechanism for activation and desensitization of a-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors. J Biol Chem 271: 15299–15302

    Article  CAS  PubMed  Google Scholar 

  • Mano I, Teichberg VI (1998) A tetrameric subunit stoichiometry for a glutamate receptor channel complex. Neuroreport 9: 327–331

    Article  CAS  PubMed  Google Scholar 

  • Maricq AV, Peckol E, Driscoll M, Bargmann CI (1995) Mechanosensory signaling in C. elegans mediated by the GLR-1 glutamate receptor. Nature 378: 78–81

    Article  CAS  PubMed  Google Scholar 

  • Martin LJ, Blackstone CD, Levey AI, Huganir RL, Price DL (1993) AMPA glutamate receptor subunits are differentially distributed in rat brain. Neuroscience 53: 327–358

    Article  CAS  PubMed  Google Scholar 

  • Masami M (1993) New protein and gene coding the protein. GenBank E05440. Patent JP 1993239098-A

    Google Scholar 

  • Masami M (1994a) New protein and gene coding the protein. GenBank E06594. Patent JP 1994014783-A

    Google Scholar 

  • Masami M (1994b) New protein and gene coding the protein. GenBank E06819. Patent JP 1994062861-A

    Google Scholar 

  • Masami M (1994c) New protein and gene coding the protein. GenBank E06820. Patent JP 1994062861-A

    Google Scholar 

  • Masami M (1994d) New protein and gene coding the protein. GenBank E06821. Patent JP 1994062861-A

    Google Scholar 

  • Masami M (1994e) New protein and gene coding the protein. GenBank E07654. Patent JP 1994157597-A

    Google Scholar 

  • Masu M, Tanabe Y,Tsuchida K, Shigemoto R, Nakanishi S (1991) Sequence and expression of a metabotropic glutamate receptor. Nature 349: 760–765

    CAS  Google Scholar 

  • Masu Y, Kazuhisa N, Tamaki H, Harada Y, Kuno M, Nakanishi S (1987) cDNA cloning of bovine substance-K receptor through oocyte expression system. Nature 329: 836–838

    Google Scholar 

  • Matteri RL (1997) Partial cDNA sequence of porcine N-methyl-D-aspartate (NMDA) receptor. GenBank AF008560. Unpublished sequence

    Google Scholar 

  • Mayat E, Petralia RS, Wang YX, Wenthold RJ (1995) Immunoprecipitation, immunoblotting, and immunocytochemistry studies suggest that glutamate receptor S subunits form novel postsynaptic receptor complexes. J Neurosci 15: 2533–2546

    CAS  PubMed  Google Scholar 

  • Mayer ML, Westbrook GL (1987) The physiology of excitatory amino acids in the vertebrate central nervous system. Prog Neurobiol 28: 197–276

    Article  CAS  PubMed  Google Scholar 

  • McBain CJ, Mayer ML (1994) N-methyl-D-aspartic acid receptor structure and function. Physiol Rev 74: 723–760

    Article  CAS  PubMed  Google Scholar 

  • McDonald JW, Johnston MV (1990) Physiological and pathophysiological roles of excitatory amino acids during central nervous system development. Brain Res Rev 15: 41–70

    Article  PubMed  Google Scholar 

  • McGlade-McCulloh E, Yamamoto H, Tan SE, Brickey DA, Soderling TR (1993) Phosphorylation and regulation of glutamate receptors by calcium calmodulindependent protein kinase II. Nature 362: 640–642

    Article  CAS  PubMed  Google Scholar 

  • McHugh TJ, Blum KI, Tsien JZ, Tonegawa S, Wilson MA (1996) Impaired hippocampal representation of space in CA1-specific NMDAR1 knockout mice. Cell 87: 1339–1349

    Article  CAS  PubMed  Google Scholar 

  • McLaughlin DP, Kerwin RW (1994) GenBank X82068. Unpublished sequence McNamara JO, Eubanks JH, McPherson JD, Wasmuth JJ, Evans GA, Heinemann SF(1992)Chromosomal localization of human glutamate receptor genes. J Neurosci 12:25-62

    Google Scholar 

  • Meguro H, Mori H, Araki K, Kushiya E, Kutsuwada T, Yamazaki M, Kumanishi T, Arakawa M, Sakimura K, Mishina M (1992) Functional characterization of a heteromeric NMDA receptor channel expressed from cloned cDNAs. Nature 357: 70–74

    Article  CAS  PubMed  Google Scholar 

  • Mellem JE, Zheng Y, Maricq AV (1997) Ionotropic glutamate receptors in C. elegans. Soc Neurosci Abstr 23: 936

    Google Scholar 

  • Messersmith EK, Feller MB, Zhang H, Shatz CJ (1997) Migration of neocortical neurons in the absence of functional NMDA receptors. Mol Cell Neurosci 9: 347–357

    Article  CAS  PubMed  Google Scholar 

  • Minami T, Sugatani J, Sakimura K, Abe M, Mishina M, Ito S (1997) Absence of prostaglandin e-2-induced hyperalgesia in NMDA receptor epsilon subunit knockout mice. Br J Pharmacol 120: 1522–1526

    Article  CAS  PubMed  Google Scholar 

  • Mishina M (1996a) NMDH receptor proteins and genes encoding the same. GenBank I19101. Patent US 5502166-A

    Google Scholar 

  • Mishina M (1996b) NMDH receptor proteins and genes encoding the same. GenBank I19102. Patent US 5502166-A

    Google Scholar 

  • Mishina M (1996c) NMDH receptor proteins and genes encoding the same. GenBank 119103. Patent US 5502166-A

    Google Scholar 

  • Mishina M (1996d) NMDH receptor proteins and genes encoding the same. GenBank I19107. Patent US 5502166-A

    Google Scholar 

  • Mishina M (1996e) NMDH receptor proteins and genes encoding the same. GenBank I19108. Patent US 5502166-A

    Google Scholar 

  • Mishina M (1996f) NMDH receptor proteins and genes encoding the same. GenBank I19109. Patent US 5502166-A

    Google Scholar 

  • Mishina M (1996g) NMDH receptor proteins and genes encoding the same. GenBank I19110. Patent US 5502166-A

    Google Scholar 

  • Molnar E, Baude A, Richmond SA, Patel PB, Somogyi P, Mcllhinney RAJ (1993) Biochemical and immunocytochemical characterization of antipeptide antibodies to a cloned G1uR1 glutamate receptor subunit: cellular and subcellular distribution in the rat forebrain. Neuroscience 53: 307–326

    Article  CAS  PubMed  Google Scholar 

  • Molnar E, Mcllhinney RAJ, Baude A, Nusser Z, Somogyi P (1994) Membrane topology of the GIuR1 glutamate receptor subunit: Epitope mapping by site-directed antipeptide antibodies. J Neurochem 63: 683–693

    Google Scholar 

  • Monaghan DT, Bridges RJ, Cotman CW (1989) The excitatory amino acid receptors: Their classes, pharmacology, and distinct properties in the function of the central nervous system. Annu Rev Pharmacol Toxico129: 365–402

    Google Scholar 

  • Monyer H, Burnashev N, Laurie DJ, Sakmann B, Seeburg PH (1994) Developmental and regional expression in the rat brain and functional properties of four NMDA receptors. Neuron 12: 529–540

    Article  CAS  PubMed  Google Scholar 

  • Monyer H, Sprengel R, Schoepfer R, Herb A, Higuchi M, Lomeli H, Burnashev N, Sakmann B, Seeburg PH (1992) Heteromeric NMDA receptors: molecular and functional distinction of subtypes. Science 256: 1217–1221

    Article  CAS  PubMed  Google Scholar 

  • Mori H, Mishina M (1995) Structure and function of the NMDA receptor channel. Neuropharmacology 34: 1219–1237

    Article  CAS  PubMed  Google Scholar 

  • Morita T, Sakimura K, Kushiya E, Yamazaki M, Meguro H, Araki K, Abe T, Mori KJ, Mishina M (1992) Cloning and functional expression of a cDNA encoding the mouse f32 subunit of the kainate-selective glutamate receptor channel. Mol Brain Res 14: 143–146

    Article  CAS  PubMed  Google Scholar 

  • Moriyoshi K, Masu M, Ishii T, Shigemoto R, Mizuno N, Nakanishi S (1991) Molecular cloning and characterization of the rat NMDA receptor. Nature 354: 31–37

    Article  CAS  PubMed  Google Scholar 

  • Mosbacher J, Schoepfer R, Monyer H, Burnashev N, Seeburg PH, Ruppersberg JP (1994) A molecular determinant for submillisecond desensitization in glutamate receptors. Science 266: 1059–1062

    Article  CAS  PubMed  Google Scholar 

  • Moss SJ, Blackstone CD, Huganir RL (1993) Phosphorylation of recombinant nonNMDA glutamate receptors on serine and tyrosine residues. Neurochem Res 18: 105–110

    Article  CAS  PubMed  Google Scholar 

  • Mott DD, Doherty JJ, Zhang SN, Washburn MS, Fendley MJ, Lyuboslaysky P, Traynelis SF, Dingledine R (1998) Phenylethanolamines inhibit NMDA receptors by enhancing proton inhibition. Nature Neuroscience 1: 659–667

    Article  CAS  PubMed  Google Scholar 

  • Mulle C, Sailer A, Perezotano I, Dickinson-Anson H, Castillo PE, Bureau I, Maron C, Gage FH, Mann JR, Bettler B, Heinemann SF (1998) Altered synaptic physiology and reduced susceptibility to kainate-induced seizures in G1uR6-deficient mice. Nature 392: 601–605

    Article  CAS  PubMed  Google Scholar 

  • Mußhoff U, Madeja M, Bloms P, Muschnittel K, Speckmann EJ (1992) Tunicamycininduced inhibition of functional expression of glutamate receptors in Xenopus oocytes. Neurosci Lett 147: 163–166

    Article  PubMed  Google Scholar 

  • Myers SJ, Peters J, Huang YF, Comer MB, Barthel F, Dingledine R (1998) Transcriptional regulation of the G1uR2 gene: neural-specific expression, multiple promoters, and regulatory elements. J Neurosci 18: 6723–6739

    CAS  PubMed  Google Scholar 

  • Nagasawa M, Sakimura K, Mori KJ, Bedell MA, Copeland NG, Jenkins NA, Mishina M (1996) Gene structure and chromosomal localization of the mouse NMDA receptor channel subunits. Mol Brain Res 36: 1–11

    Article  CAS  PubMed  Google Scholar 

  • Nakanishi N, Axel R, Shneider R (1992) Alternative splicing generates functionally distinct N-methyl-D-asparte receptors. Proc Natl Acad Sci (USA) 89: 85528556

    Google Scholar 

  • Nakanishi N, Shneider NA, Axel R (1990) A family of glutamate receptor genes: evidence for the formation of heteromultimeric receptors with distinct channel properties. Neuron 5: 569–581

    Article  CAS  PubMed  Google Scholar 

  • Nakanishi S (1994) Metabotropic glutamate receptors: synaptic transmission, modulation, and plasticity. Neuron 13: 1031–1037

    Article  CAS  PubMed  Google Scholar 

  • Nakanishi S, Masu M (1994) Molecular diversity and functions of glutamate receptors. Annu Rev Biophys Biomol Struct 23: 319–348

    Article  CAS  PubMed  Google Scholar 

  • Nash NR, Heilman CJ, Rees HD, Levey AI (1997) Cloning and localization of exon 5-containing isoforms of the NMDAR1 subunit in human and rat brains. J Neurochem 69: 485–493

    Article  CAS  PubMed  Google Scholar 

  • Noda M, Takahashi H, Tanabe T, Toyosato M, Furutani Y, Hirose T, Asai M, Inayama S, Miyata T, Numa S (1982) Primary structure of a-subunit precursor of Torpedo californica acetylcholine receptor deduced from cDNA sequence. Nature 299: 793–797

    Article  CAS  PubMed  Google Scholar 

  • Nohno T, Saito T, Hong J-S (1986) Cloning and complete nucleotide sequence of the Escherichia coli glutamine permease operon (gin HPQ). Molecular Gen Genetics 205: 260–269

    Article  CAS  Google Scholar 

  • Novere NL, Changeux J-P (1995) Molecular evolution of the nicotinic acetylcholine receptor: an example of multigene family in excitable cells. J Mol Evol 40: 155–172

    Article  PubMed  Google Scholar 

  • Nutt SL, Hoo KH, Rampersad V, Deverill RM, Elliott CE, Fletcher EJ, Adams SL, Korczak B, Foldes RL, Kamboj RK (1994) Molecular characterization of the human EAA5 (GluR7) receptor: a high-affinity kainate receptor with novel potential RNA editing sites. Receptors Channels 2: 315–326

    CAS  PubMed  Google Scholar 

  • Nutt SL, Kamboj RK (1994a) Differential RNA editing efficiency of AMPA receptor subunit G1uR-2 in human brain. Neuroreport 5: 1679–1683

    Article  CAS  PubMed  Google Scholar 

  • Nutt SL, Kamboj RK (1994b) RNA editing of human kainate receptor subunits. Neuroreport 5: 2625–2629

    Article  CAS  PubMed  Google Scholar 

  • O’Hara PJ, Sheppard PO, Thogersen H, Venezia D, Haldeman BA, McGrane V, Houamed KM, Thomsen C, Gilbert TL, Mulvihill ER (1993) The ligand binding domain in metabotropic glutamate receptors is related to bacterial periplasmic binding proteins. Neuron 11: 41–52

    Article  PubMed  Google Scholar 

  • Oh B-H, Pandit J, Kang C-H, Nikaido K, Gokcen S, Ames GF-L, Kim S-H (1993) Three-dimensional structures of the periplasmic lysine-, arginine-, ornithine-binding protein with and without a ligand. J Biol Chem 268: 11348–11355

    CAS  PubMed  Google Scholar 

  • Okabe S, Collin C, Auerbach JM, Meiri N, Bengzon J, Kennedy MB, Segal M, McKay RDG (1998) Hippocampal synaptic plasticity in mice overexpressing an embryonic subunit of the NMDA receptor. J Neurosci 18: 4177–4188

    CAS  PubMed  Google Scholar 

  • Ottiger HP, Gerfin-Moser A, Del Principe F, Dutly F, Streit P (1995) Molecular cloning and differential expression patterns of avian glutamate receptor mRNAs. J Neurochem 64: 2413–2426

    Article  CAS  PubMed  Google Scholar 

  • Paas Y (1998) The macroarchitectures and microarchitectures of the ligand binding domain of glutamate receptors. Trends Neurosci 21: 117–125

    Article  CAS  PubMed  Google Scholar 

  • Paas Y, Eisenstein M, Medevielle F, Teichberg VI, Devillers-Thiery A (1996) Identification of the amino-acid subsets accounting for the ligand binding specificity of a glutamate receptor. Neuron 17: 979–990

    Article  CAS  PubMed  Google Scholar 

  • Paoletti P, Ascher P, Neyton J (1997) High-affinity zinc inhibition of NMDA NR1–NR2 A receptors. J Neurosci 17: 5711–5725 (+ correction J Neurosci 17:U8)

    Google Scholar 

  • Paperna T, Lamed Y, Teichberg VI (1996) cDNA cloning of chick brain a-amino-3hydroxy-5-methyl-4-isoxazolepropionic acid receptors reveals conservation of structure, function and posttranscriptional processes with mammalian receptors. Mol Brain Res 36: 101–113

    Google Scholar 

  • Paschen W, Blackstone CD, Huganir RL, Ross CA (1994a) Human GluR6 kainate receptor (GRIK2): molecular cloning, expression, polymorphism, and chromosomal assignment. Genomics 20: 435–440

    Article  CAS  PubMed  Google Scholar 

  • Paschen W, Djuricic B (1994) Extent of RNA editing of glutamate receptor subunit G1uR5 in different brain regions of the rat. Cell Mol Neurobiol 14: 259–270

    Article  CAS  PubMed  Google Scholar 

  • Paschen W, Djuricic B (1995) Regional differences in the extent of RNA editing of the glutamate receptor subunits GluR2 and G1uR6 in rat brain. J Neurosci Meth 56: 21–29

    Article  CAS  Google Scholar 

  • Paschen W, Hedreen JC, Ross CA (1994b) RNA editing of the glutamate receptor sub- units G1uR2 and G1uR6 in human brain tissue. J Neurochem 63: 1596–1602

    Article  CAS  PubMed  Google Scholar 

  • Pellicena-Palle A, Salz HK (1995) The putative Drosophila NMDARa1 gene is located on the 2nd chromosome and is ubiquitously expressed in embryogenesis. Biochim Biophys Acta 1261: 301–303

    Article  PubMed  Google Scholar 

  • Petersen SA, Fetter RD, Noordermeer JN, Goodman CS, DiAntonio A (1997) Genetic analysis of glutamate receptors in Drosophila reveals a retrograde signal regulating presynaptic transmitter release. Neuron 19: 1237–1248

    Article  CAS  PubMed  Google Scholar 

  • Petralia RS, Wenthold RJ (1992) Light and electron immunocytochemical localization of AMPA-selective glutamate receptors in the rat brain. J Comp Neurol 318: 329–354

    Article  CAS  PubMed  Google Scholar 

  • Petrou S, Ordway RW, Singer JJ, Walsh JV (1993) A putative fatty acid binding domain of the NMDA receptor. Trends Biochem Sci 18: 41–42

    Article  CAS  PubMed  Google Scholar 

  • Pfeiffer F, Graham D, Betz H (1982) Purification by affinity chromatography of the glycine receptor of rat spinal cord. J Biol Chem 257: 9389–9393

    CAS  PubMed  Google Scholar 

  • Pickering DS, Taverna FA, Salter MW, Hampson DR (1995) Palmitoylation of the G1uR6 kainate receptor. Proc Natl Acad Sci (USA) 92: 12090–12094

    Article  CAS  Google Scholar 

  • Pin J-P, Gomeza J, Prezeau L, Joly C, Bockaert J (1996) The metabotropic glutamate receptors: differences and similarities with the other G-protein coupled receptors. In: Schwartz TW, Hjorth SA, Sandholm-Kastrup J (eds) Structure and function of 7TM receptors, vol 39. Munksgaard, Copenhagen, pp 343–354

    Google Scholar 

  • Pin JP, Bockaert J (1995) Get receptive to metabotropic glutamate receptors. Curr Opin Neurobiol 5: 342–349

    Article  CAS  PubMed  Google Scholar 

  • Pin JP, Duvoisin R (1995) The metabotropic glutamate receptors: Structure and functions. Neuropharmacology 34: 1–26

    Google Scholar 

  • Planells-Cases R, Sun W, Ferrer-Montiel AV, Montal M (1993) Molecular cloning, functional expression, and pharmacological characterization of an N-methyl-Daspartate receptor subunit from human brain. Proc Natl Acad Sci (USA) 90: 5057–5061

    Article  CAS  Google Scholar 

  • Ponomareva LV, McMahon DG (1996) GenBank U44736. Unpublished sequence Potier M-C, Dutriaux A, Lambolez B, Bochet P, Rossier J (1993) Assignment of the human glutamate receptor gene G1uR5 to 21q22 by screening a chromosome-21 YAC library. Genomics 15: 696–697

    Google Scholar 

  • Potier M-C, Spillantini MG, Carter NP (1992) The human glutamate receptor cDNA G1uR1: cloning, sequencing, expression and localization to chromosome 5. DNA Seq 2: 211–218

    CAS  PubMed  Google Scholar 

  • Pravenec M, Kren V, Hope M, Wang JM, Lezin ES (1998) Linkage mapping of the interleukin-1-beta converting-enzyme (illbc) and the glutamate receptor subunit KA1 (grik4) genes to rat chromosome-8. Folia Biologica 44: 107–109

    CAS  PubMed  Google Scholar 

  • Premkumar L, Erreger K, Auerbach A (1997) NMDA receptor stoichiometry determined by subconductance pattern analysis. Biophys J 72: A334

    Google Scholar 

  • Premkumar LS, Auerbach A (1997) Stoichiometry of recombinant N-methyl-D-aspartate receptor channels inferred from single channel current patterns. J Gen Physiol 110: 485–502

    Article  CAS  PubMed  Google Scholar 

  • Puchalski RB, Louis J-C, Brose N, Traynelis SF, Egebjerg J, Kukekov V, Wenthold RJ, Rogers SW, Lin F, Moran T, Morrison JH, Heinemann SF (1994) Selective RNA editing and subunit assembly of native glutamate receptors. Neuron 13: 131–147

    Article  CAS  PubMed  Google Scholar 

  • Puckett C, Gomez CM, Korenberg JR, Tung H, Meier TJ, Chen XN, Hood L (1991) Molecular cloning and chromosomal localization of one of the human glutamate receptor genes. Proc Natl Acad Sci (USA) 88: 7557–7561

    Article  CAS  Google Scholar 

  • Puranam RS, Eubanks JH, Heinemann SF, McNamara JO (1993) Chromosomal localization of gene for human glutamate receptor subunit 7. Somat Cell Mol Genet 19: 581–588

    Article  CAS  PubMed  Google Scholar 

  • Quiocho FA (1990) Atomic structures of periplasmic binding proteins and the high-affinity active transport systems in bacteria. Philos Trans R Soc Lond (B) 326: 341–351

    Article  CAS  Google Scholar 

  • Raftery MA, Hunkapiller M, Strader CD, Hood LE (1980) Acetylcholine receptor: complex of homologous subunits. Science 208: 1454–1457

    Article  CAS  PubMed  Google Scholar 

  • Rampersad V, Elliott CE, Nutt SL, Foldes RL, Kamboj RK (1994) Human glutamate receptor hGluR3 flip and flop isoforms: cloning and sequencing of the cDNAs and primary structure of the proteins. Biochim Biophys Acta 1219: 563–566

    Article  CAS  PubMed  Google Scholar 

  • Ravindranathan A, Parks TN, Rao MS (1997) New isoforms of the chick glutamate receptor subunit G1uR4: molecular cloning, regional expression and developmental analysis. Mol Brain Res 50: 143–153

    Article  CAS  PubMed  Google Scholar 

  • Raymond LA, Blackstone CD, Huganir RL (1993) Phosphorylation and modulation of recombinant G1uR6 glutamate receptors by cAMP-dependent protein kinase. Nature 361: 637–641

    Article  CAS  PubMed  Google Scholar 

  • Riley BP, Tahir E, Rajagopalan S, Mogudi-Carter M, Faure S, Weissenbach J, Jenkins T, Williamson R (1997) A linkage study of the N-methyl-D-aspartate receptor subunit gene loci and schizophrenia in Southern African Bantu-speaking families. Psychiatric Genet 7: 57–74

    Article  CAS  Google Scholar 

  • Ripellino JA, Neve RL, Howe JR (1998) Expression and heteromeric interactions of non-N-methyl-D-aspartate glutamate receptor subunits in the developing and adult cerebellum. Neuroscience 82: 485–497

    Article  CAS  PubMed  Google Scholar 

  • Roche KW, O’Brien RJ, Mammen AL, Bernhardt J, Huganir RL (1996) Characterization of multiple phosphorylation sites on the AMPA receptor GluR1 subunit. Neuron 16: 1179–1188

    Article  CAS  PubMed  Google Scholar 

  • Rock DM, Macdonald RL (1995) Polyamine regulation of N-methyl-D-aspartate receptor channels. Annu Rev Pharmacol Toxicol 463–482

    Google Scholar 

  • Rosenmund C, Stern-Bach Y, Stevens CF (1998) The tetrameric structure of a glutamate receptor channel. Science 280: 1596–1599

    Article  CAS  PubMed  Google Scholar 

  • Rubinsztein DC, Leggo J, Chiano M, Dodge A, Norbury G, Rosser E, Craufurd D (1997) Genotypes at the GluR6 kainate receptor locus are associated with variation in the age of onset of Huntington disease. Proc Natl Acad Sci (USA) 94: 3872–3876

    Article  CAS  Google Scholar 

  • Sahara Y, Noro N, Lida Y, Soma K, Nakamura Y (1997) Glutamate receptor subunits GluR5 and KA-2 are coexpressed in rat trigeminal ganglion neurons. J Neurosci 17: 6611–6620

    CAS  PubMed  Google Scholar 

  • Sakimura K, Bujo H, Kushiya E, Araki K, Yamazaki M, Yamazaki M, Meguro H, Warashina A, Numa S, Mishina M (1990) Functional expression from cloned cDNAs of glutamate receptor species responsive to kainate and quisqualate. FEBS Lett 272: 73–80

    Article  CAS  PubMed  Google Scholar 

  • Sakimura K, Kutsuwada T, Ito I, Manabe T, Takayama C, Kushiya E, Yagi T, Aizawa S, Inoue Y, Sugiyama H, Mishina M (1995) Reduced hippocampal LTP and spatial learning in mice lacking NMDA receptor e1 subunit. Nature 373: 151155

    Google Scholar 

  • Sakimura K, Morita T, Kushiya E, Mishina M (1992) Primary structure and expression of the 72 subunit of the glutamate receptor channel selective for kainate. Neuron 8: 267–274

    Article  CAS  PubMed  Google Scholar 

  • Sander T, Hildmann T, Kretz R, Furst R, Sailer U, Bauer G, Schmitz B, BeckMannagetta G, Wienker TF, Janz D (1997) Allelic association of juvenile absence epilepsy with a GluR5 kainate receptor gene (GRIKJ) polymorphism. Am J Medic Genet 74: 416–421

    Article  CAS  Google Scholar 

  • Sander T, Janz D, Ramel C, Ross CA, Paschen W, Hildmann T, Wienker TF, Bianchi A, Bauer G, Sailer U, Berek K, Neitzel H, Volz A, Ziegler A, Schmitz B, BeckMannagetta G (1995) Refinement of map position of the human G1uR6 kainate receptor gene (grik2) and lack of association and linkage with idiopathic generalized epilepsies. Neurology 45: 1713–1720

    Article  CAS  PubMed  Google Scholar 

  • Sasner M, Buonanno A (1996) Distinct N-methyl-D-aspartate receptor 2B subunit gene sequences confer neural and developmental specif c expression. J Biol Chem 271: 21316–21322

    CAS  Google Scholar 

  • Schiffer HH, Swanson GT, Heinemann SF (1997) R at G1uR7 and a carboxy-terminal splice variant, GluR7b, are functional kainate receptor subunits with a low sensitivity to glutamate. Neuron 19: 1141–1146

    Article  CAS  PubMed  Google Scholar 

  • Schoepp D, Bockaert J, Sladeczek F (1990) Pharmacological and functional characteristics of metabotropic excitatory amino acid receptors. Trends Pharmacol Sci 11: 508–515

    Article  CAS  PubMed  Google Scholar 

  • Schoepp DD (1994) Novel functions for subtypes of metabotropic glutamate receptors. Neurochem Int 24: 439–449

    Article  CAS  PubMed  Google Scholar 

  • Schoepp DD, Conn PJ (1993) Metabotropic glutamate receptors in brain function and pathology. Trends Pharmacol Sci 14: 13–20

    Article  CAS  PubMed  Google Scholar 

  • Schofield PR, Darlison MG, Fujita N, Burt DR, Stephenson FA, Rodriguez H, Rhee LM, Ramachandran J, Reale V, Glencorse TA, Seeburg PH, Barnard EA (1987) Sequence and functional expression of the GABAA receptor shows a ligand-gated receptor super-family. Nature 328:221-

    Google Scholar 

  • Schuster CM, Ultsch A, Schloss P, Cox JA, Schmitt B, Betz H (1991) Molecular cloning of an invertebrate glutamate receptor subunit expressed in Drosophila muscle. Science 254: 112–114

    Article  CAS  PubMed  Google Scholar 

  • Seeburg PH (1993) The TiPS/TINS lecture: The molecular biology of mammalian glutamate receptor channels. Trends Pharmacol Sci 14: 297–303

    Article  CAS  PubMed  Google Scholar 

  • Seeburg PH (1996) The role of RNA editing in controlling glutamate receptor channel properties. J Neurochem 66: 1–5

    Article  CAS  PubMed  Google Scholar 

  • Sheng M, Cummings J, Roldan LA, Jan YN, Jan LY (1994) Changing subunit composition of heteromeric NMDA receptors during development of rat cortex. Nature 368: 144–147

    Article  CAS  PubMed  Google Scholar 

  • Smirnova T, Laroche S, Errington ML, Hicks AA, Bliss TVP, Mallet J (1993a) Transsynaptic expression of a presynaptic glutamate receptor during hippocampal longterm potentiation. Science 262: 433–436

    Article  CAS  PubMed  Google Scholar 

  • Smirnova T, Stinnakre J, Mallet J (1993b) Characterization of a presynaptic glutamate receptor. Science 262: 430–433

    Article  CAS  PubMed  Google Scholar 

  • Soloviev MM, Barnard EA (1997) Xenopus oocytes express a unitary glutamate receptor endogenously. J Mol Biol 273: 14–18

    Google Scholar 

  • Soloviev MM, Brierley MJ, Shao ZY, Mellor IR, Volkova TM, Kamboj R, Ishimaru H, Sudan H, Harris J, Foldes RL, Grishin EV, Usherwood PNR, Barnard EA (1996) Functional expression of a recombinant unitary glutamate receptor from Xenopus, which contains N-methyl-D-aspartate ( NMDA) and non-NMDA receptor subunits. J Biol Chem 271: 32572–32579

    Google Scholar 

  • Soloviev MM, Abutidze K, Mellor I, Streit P, Grishin EV, Usherwood PN, Barnard EA (1998) Plasticity of agonist binding sites in hetero-oligomers of the unitary glutamate receptor subunit XenUl. J Neurochem 71: 991–1001

    Article  CAS  PubMed  Google Scholar 

  • Sommer B, Burnashev N, Verdoorn TA, Keinänen K, Sakmann B, Seeburg PH (1992) A glutamate receptor channel with high affinity for domoate and kainate. EMBO J 11: 1651–1656

    CAS  PubMed  Google Scholar 

  • Sommer B, Keinänen K, Verdoorn TA, Wisden W, Burnashev N, Herb A, Köhler M, Takagi T, Sakmann B, Seeburg PH (1990) Flip and flop: a cell-specific functional switch in glutamate-operated channels of the CNS. Science 249: 1580–1585

    Article  CAS  PubMed  Google Scholar 

  • Sommer B, Köhler M, Sprengel R, Seeburg PH (1991) RNA editing in brain controls a determinant of ion flow in glutamate-gated channels. Cell 67: 11–19

    Article  CAS  PubMed  Google Scholar 

  • Sprengel R, Seeburg PH (1995) Ionotropic glutamate receptors. In: Ligand-and voltage-gated ion channels, vol 2. CRC Press, Boca Raton, pp 213–263

    Google Scholar 

  • Sprengel R, Suchanek B, Amico C, Brusa R, Burnashev N, Rozov A, Hvalby O, Jensen V, Paulsen O, Andersen P, Kim JJ, Thompson RF, Sun W, Webster LC, Grant SGN, Eilers J, Konnerth A, Li J, McNamara JO, Seeburg PH (1998) Importance of the intracellular domain of NR2 subunits for NMDA receptor function in vivo. Cell 92: 279–289

    Article  CAS  PubMed  Google Scholar 

  • Stern-Bach Y, Bettler B, Hartley M, Sheppard PO, O’Hara PJ, Heinemann SF (1994) Agonist selectivity of glutamate receptors is specified by two domain s structurally related to bacterial amino acid-binding proteins. Neuron 13: 1345–1357

    Article  CAS  PubMed  Google Scholar 

  • Stern-Bach Y, Russo S, Neuman M, Rosenmund C (1998) A point mutation in the glutamate binding site blocks desensitization of AMPA receptors. Neuron 21: 907918

    Google Scholar 

  • Stühmer T, Amar M, Harvey RJ, Bermudez I, van Minnen J, Darlison MG (1996) Structure and pharmacological properties of a molluscan glutamate-gated cation channel and its likely role in feeding behavior. J Neurosci 16: 28692880

    Google Scholar 

  • Suchanek B, Seeburg PH, Sprengel R (1995) Gene structure of the murine N-methylD-aspartate receptor subunit NR2 C. J Biol Chem 270: 41–44

    Article  CAS  PubMed  Google Scholar 

  • Suchanek B, Seeburg PH, Sprengel R (1997) Tissue-specific control regions of the Nmethyl-D-aspartate receptor subunit NR2 C promoter. Biological Chemistry 378: 929–934

    CAS  PubMed  Google Scholar 

  • Sucher NJ, Akbarian S, Chi CL, Leclerc CL, Awobuluyi M, Deitcher DL, Wu MK, Yuan JP, Jones EG, Lipton SA (1995) Developmental and regional expression pattern of a novel NMDA receptor-like subunit ( NMDAR-L) in the rodent brain. J Neurosci 15: 6509–6520

    Google Scholar 

  • Sucher NJ, Awobuluyi M, Choi YB, Lipton SA (1996) NMDA receptors: from genes to channels. Trends Pharmacol Sci 17: 348–355

    CAS  PubMed  Google Scholar 

  • Sugihara H, Moriyoshi K, Ishii T, Masu M, Nakanishi S (1992) Structures and properties of 7 isoforms of the NMDA receptor generated by alternative splicing. Biochem Biophys Res Comm 185: 826–832

    Article  CAS  PubMed  Google Scholar 

  • Sullivan JM, Traynelis SF, Chen HSV, Escobar W, Heinemann SF, Lipton SA (1994) Identification of 2 cysteine residues that are required for redox modulation of the NMDA subtype of glutamate receptor. Neuron 13: 929–936

    Article  CAS  PubMed  Google Scholar 

  • Sulston J, Du Z, Thomas K, Wilson R, Hillier L, Staden R, Halloran N, Green P, ThierryMieg J, Qiu L, Dear S, Coulson A, Craxton M, Durbin R, Berks M, Metzstein M, Hawkins T, Ainscough R, Waterston R (1992) The C. elegans genome sequencing project: a beginning Nature 356: 37–41

    Google Scholar 

  • Sumikawa K, Houghton J, Smith JG, Bell L, Richards BM, Barnard EA (1982) The molecular cloning and characterization of cDNA coding for the a subunit of the acetylcholine receptor. Nucleic Acids Res 10: 5809–5822

    Article  CAS  PubMed  Google Scholar 

  • Sun W, Ferrer-Montiel AV, Montal M (1994) Primary structure and functional expression of the AMPA/kainate receptor subunit 2 from human brain. Neuroreport 5: 441–444

    Article  CAS  PubMed  Google Scholar 

  • Sun W, Ferrer-Montiel AV, Schinder AF, McPherson JP, Evans GA, Montal M (1992) Molecular cloning, chromosomal mapping, and functional expression of human brain glutamate receptors. Proc Natl Acad Sci (USA) 89: 1443–1447

    Article  CAS  Google Scholar 

  • Sutcliffe MJ, Wo ZG, Oswald RE (1996) Three-dimensional models of non-NMDA glutamate receptors. Biophys J 70: 1575–1589

    Article  CAS  PubMed  Google Scholar 

  • Sutcliffe MJ, Smeeton AH, Wo ZG, Oswald RE (1998) Three-dimensional models of glutamate receptors. Biochem Soc Trans 26: 450–458

    CAS  PubMed  Google Scholar 

  • Swafford DL, Olsen GJ (1990) Phylogeny reconstruction. In: Hillis DM, Moritz C (eds) Molecular systematics. Sinauer, Sunderland, MA, pp 411–501

    Google Scholar 

  • Swanson GT, Gereau RW, Green T, Heinemann SF (1997) Identification of amino acid residues that control functional behavior in GluR5 and GIuR6 kainate receptors. Neuron 19: 913–926

    Article  CAS  PubMed  Google Scholar 

  • Szpirer C, Molne M, Antonacci R, Jenkins NA, Finelli P, Szpirer J, Riviere M, Rocchi M, Gilbert DJ, Copeland NG, Gallo V (1994) The genes encoding the glutamate receptor subunits KA1 and KA2 (grik4 and grik5) are located on separate chromosomes in human, mouse, and rat. Proc Natl Acad Sci (USA) 91: 11849–11853

    Article  CAS  Google Scholar 

  • Takahashi T, Feldmeyer D, Suzuki N, Onodera K, Cull-Candy SG, Sakimura K, Mishina M (1996) Functional correlation of NMDA receptor e subunits expression with the properties of single-channel and synaptic currents in the developing cerebellum. J Neurosci 16: 4376–4382

    CAS  PubMed  Google Scholar 

  • Takano H, Onodera O, Tanaka H, Mori H, Sakimura K, Hori T, Kobayashi H, Mishina M, Tsuji S (1993) Chromosomal localization of the e1, e3, and subunit genes of the human NMDA receptor channel. Biochem Biophys Res Comm 197: 922–926

    Article  CAS  PubMed  Google Scholar 

  • Tokita Y, Bessho Y, Masu M, Nakamura K, Nakao K, Katsuki M, Nakanishi S (1996) Characterization of excitatory amino acid neurotoxicity in N-methyl-D-aspartate receptor-deficient mouse cortical neuronal cells. Eur J Neurosci 8: 69–78

    Article  CAS  PubMed  Google Scholar 

  • Tonegawa S, Tsien JZ, McHugh TJ, Huerta P, Blum KI, Wilson MA (1996) Hippocampal CA1-region-restricted knockout of NMDAR1 gene disrupts synaptic plasticity, place fields, and spatial learning. Cold Spring Harbor Symp Quant Biol 61: 225–238

    Article  CAS  PubMed  Google Scholar 

  • Treadaway J, Zuo J (1998) Mapping of the mouse glutamate receptor 81 subunit (gridl) to chromosome 14. Genomics 54: 359–360

    Article  CAS  PubMed  Google Scholar 

  • Traynelis SF, Burgess MF, Zheng F, Lyuboslaysky P, Powers JL (1998) Control of voltage-independent zinc inhibition of NMDA receptors by the NR1 subunit. J Neurosci 18: 6163–6175

    CAS  PubMed  Google Scholar 

  • Traynelis SF, Hartley M, Heinemann SF (1995) Control of proton sensitivity of the NMDA receptor by RNA splicing and polyamines. Science 268: 873–876

    Article  CAS  PubMed  Google Scholar 

  • Tsien JZ, Huerta PT, Tonegawa S (1996) The essential role of hippocampal CA1NMDA receptor-dependent synaptic plasticity in spatial memory. Cell 87: 1327–1338

    Article  CAS  PubMed  Google Scholar 

  • Tzartos SJ, Lindstrom JM (1980) Monoclonal antibodies used to probe acetylcholine receptor structure: localization of the main immunogenic region and detection of similarities between subunits. Proc Natl Acad Sci (USA) 77: 755–759

    Article  CAS  Google Scholar 

  • Uchino S, Sakimura K, Nagahari K, Mishina M (1992) Mutations in a putative agonist binding region of the AMPA-selective glutamate receptor channel. FEBS Lett 308: 253–257

    Article  CAS  PubMed  Google Scholar 

  • Ueda H (1997) Multiple forms of AMPA-type glutamate receptor messenger RNA phenotypes in goldfish retina and tectum. Gen Pharmacol 29: 575–581

    Article  CAS  PubMed  Google Scholar 

  • Ueda H, Hieber V (1995) Down-regulation of AMPA-type glutamate receptor gene expression during goldfish optic nerve regeneration. Mol Brain Res 32: 151–155

    Article  CAS  PubMed  Google Scholar 

  • Ultsch A, Schuster CM, Laube B, Betz H, Schmitt B (1993) Glutamate receptors of Drosophila melanogaster: primary structure of a putative NMDA receptor protein expressed in the head of the adult fly. FEBS Lett 324: 171–177

    Article  CAS  PubMed  Google Scholar 

  • Ultsch A, Schuster CM, Laube B, Schloss P, Schmitt B, Betz H (1992) Glutamate receptors of Drosophila melanogaster: Cloning of a kainate-selective subunit expressed in the central nervous system. Proc Natl Acad Sci (USA) 89: 10484–10488

    Google Scholar 

  • Usherwood PNR (1994) Insect glutamate receptors. Adv Insect Physiol 24: 309–341

    Article  CAS  Google Scholar 

  • Usherwood PNR, Grundfest H (1965) Peripheral inhibition in skeletal muscle of insects. J Neurophysiol 28: 497–518

    CAS  PubMed  Google Scholar 

  • Usherwood PNR, Mellor I, Breedon L, Harvey RJ, Barnard EA, Darlison MG (1993) Channels formed by M2 peptides of a putative glutamate receptor subunit of locust. In: Pichon Y (ed) Comparative Molecular Neurobiology, vol 63. Birkhauser Verlag, Basel, pp 241–249

    Chapter  Google Scholar 

  • Varney MA, Rao SP, Jachec C, Deal C, Hess SD, Daggett LP, Lin FF, Johnson EC, Velicelebi G (1998) Pharmacological characterization of the human ionotropic glutamate receptor subtype G1uR3 stably expressed in mammalian cells. J Pharmacol Exp Ther 285: 358–370

    CAS  PubMed  Google Scholar 

  • Verdoorn TA, Burnashev N, Monyer H, Seeburg PH, Sakmann B (1991) Structural determinants of ion flow through recombinant glutamate receptor channels. Science 252: 1715–1718

    Article  CAS  PubMed  Google Scholar 

  • Villarroel A, Burnashev N, Sakmann B (1995) Dimensions of the narrow portion of a recombinant NMDA receptor channel. Biophys J 68: 866–875

    Article  CAS  PubMed  Google Scholar 

  • Villmann C, Bull L, Hollmann M (1997) Kainate binding proteins possess functional ion channel domains. J Neurosci 17: 7634–7643

    CAS  PubMed  Google Scholar 

  • Villmann C, Strutz N, Morth T, Hollmann M (1999) Investigation by ion channel domain transplantation of rat glutamate receptor subunits, orphan receptors, and a putative NMDA receptor subunit. Eur J Neurosci 11: 1765–1778

    Article  CAS  PubMed  Google Scholar 

  • Wada K, Dechesne CJ, Shimasaki S, King RG, Kusano K, Buonanno A, Hampson DR, Banner C, Wenthold RI, Nakatani Y (1989) Sequence and expression of a frog brain complementary DNA encoding a kainate-binding protein. Nature 342: 684–689

    Article  CAS  PubMed  Google Scholar 

  • Wafford KA, Bain CJ, Le Bourdelles B, Whiting PJ, Kemp JA (1993) Preferential co-assembly of recombinant NMDA receptors composed of three different subunits. Neuroreport 4: 1347–1349

    Article  CAS  PubMed  Google Scholar 

  • Wang JKT, Thukral V (1996) Presynaptic NMDA receptors display physiological characteristics of homomeric complexes of NR1 subunits that contain the exon 5 insert in the N-terminal domain. J Neurochem 66: 865–868

    Article  CAS  PubMed  Google Scholar 

  • Wang L-Y, Taverna FA, Huang X-P, MacDonald JF, Hampson DR (1993) Phosphorylation and modulation of a kainate receptor (GluR6) by cAMP-dependent protein kinase. Science 259: 1173–1175

    Article  CAS  PubMed  Google Scholar 

  • Watkins JC, Evans RH (1981) Excitatory amino acid transmitters. Annu Rev Pharmacol Toxicol 21: 165–204

    Article  CAS  PubMed  Google Scholar 

  • Wenthold RJ, Petralia RS, Blahos J, Niedzielski AS (1996) Evidence for multiple AMPA receptor complexes in hippocampal CA1/CA2 neurons. J Neurosci 16: 1982–1989

    CAS  PubMed  Google Scholar 

  • Wenthold RJ,Trumpy VA, Zhu WS, Petralia RS (1994) Biochemical and assembly properties of GluR6 and KA2, 2 members of the kainate receptor family, determined with subunit specific antibodies. J Biol Chem 269: 1332–1339

    CAS  PubMed  Google Scholar 

  • Wenthold RJ, Yokotani N, Doi K, Wada K (1992) Immunochemical characterization of the non-NMDA glutamate receptor using subunit specific antibodies: evidence for a hetero-oligomeric structure in rat brain. J Biol Chem 267: 501–507

    CAS  PubMed  Google Scholar 

  • Werner P, Voigt M, Keinänen K, Wisden W, Seeburg PH (1991) Cloning of a putative high-affinity kainate receptor expressed predominantly in hippocampal CA3 cells. Nature 351: 742–744

    Article  CAS  PubMed  Google Scholar 

  • Wilson R, Ainscough R, Anderson K, Baynes C, Berks M, Bonfield J, Burton J, Connell M, Copsey T, Cooper J, Coulson A, Craxton M, Dear S, Du Z, Durbin R, Favello A, Fulton L, Gardner A, Green P, Hawkins T, Hillier L, Jier M, Johnston L, Jones M, Kershaw J, Kirsten J, Laister N, Latreille P, Lightning J, Lloyd C, McMurray A, Mortimore B, O’Callaghan M, Parsons J, Percy C, Rifken L, Roopra A, Saunders D, Shownkeen R, Smaldon N, Smith A, Sonnhammer E, Staden R, Sulston J, Thierry-Mieg J, Thomas K, Vaudin M, Vaughan K, Waterston R, Watson A, Weinstock L, Wilkinson-Sproat J, Wohldman P (1994) 2.2Mb of contiguous nucleotide sequence from chromosome III of C. elegans. Nature 368: 32–38

    Google Scholar 

  • Wo ZG, Bian ZC, Oswald RE (1995) Asn-265 of frog kainate binding protein is a functional glycosylation site: implications for the transmembrane topology of glutamate receptors. FEBS Lett 368: 230–234

    Article  CAS  PubMed  Google Scholar 

  • Wo ZG, Oswald RE (1994) Transmembrane topology of two kainate receptor subunits revealed by N-glycosylation. Proc Natl Acad Sci (USA) 91: 7154–7158

    Article  CAS  Google Scholar 

  • Wo ZG, Oswald RE (1995a) Unraveling the modular design of glutamate-gated ion channels. Trends Neurosci 18: 161–168

    Article  CAS  PubMed  Google Scholar 

  • Wo ZG, Oswald RE (1996) Ligand-binding characteristics and related structural features of the expressed goldfish kainate receptors: identification of a conserved disulfide bond and 3 residues important for ligand binding. Mol Pharmacol 50: 770–780

    CAS  PubMed  Google Scholar 

  • Wo ZGL, Oswald RE (1995b) A topological analysis of goldfish kainate receptors predicts 3 transmembrane segments. J Biol Chem 270: 2000–2009

    Article  CAS  PubMed  Google Scholar 

  • Wolstenholme AJ (1997) Glutamate-gated Cl-channels in Caenorhabditis elegans and parasitic nematodes. Biochem Soc Trans 25: 830–834

    CAS  PubMed  Google Scholar 

  • Won M, Moon K-M, Lee C-E, Yoo HS (1995) Human NMDA receptor glutamate binding chain (hnrgw). GenBank U44954. Unpublished sequence

    Google Scholar 

  • Wood MW, VanDongen HMA, VanDongen AMJ (1995) Structural conservation of ion conduction pathways in K channels and glutamate receptors. Proc Natl Acad Sci (USA) 92: 4882–4886

    Article  CAS  Google Scholar 

  • Wroblewski JT, Danysz W (1989) Modulation of glutamate receptors: molecular mechanisms and functional implications. Annu Rev Pharmacol Toxicol 29: 441474

    Google Scholar 

  • Wu TY, Liu CI, Chang YC (1996a) A study of the oligomeric state of the a-amino-3hydroxy-5-methyl-4-isoxazolepropionic acid-preferring glutamate receptors in the synaptic junctions of porcine brain. Biochem J 319: 731–739

    CAS  PubMed  Google Scholar 

  • Wu YM, Kung SS, Chen JC, Chow WY (1996b) Molecular analysis of cDNA molecules encoding glutamate receptor subunits, fGluRla and fGluR1ß, of Oreochromis sp. DNA Cell Biol 15: 717–725

    Article  CAS  PubMed  Google Scholar 

  • Yakel JL, Vissavajjhala P, Derkach VA, Brickey DA, Soderling TR (1995) Identification of a Ca2+ calmodulin-dependent protein kinase II regulatory phosphorylation site in non-N-methyl-D-aspartate glutamate receptors. Proc Natl Acad Sci (USA) 92: 1376–1380

    Article  CAS  Google Scholar 

  • Yamazaki M, Araki K, Shibata A, Mishina M (1992a) Molecular cloning of a cDNA encoding a novel member of the mouse glutamate receptor channel family. Biochem Biophys Res Comm 183: 886–892

    Article  CAS  PubMed  Google Scholar 

  • Yamazaki M, Mori H, Araki K, Mori KJ, Mishina M (1992b) Cloning, expression and modulation of a mouse NMDA receptor subunit. FEBS Lett 300: 39–45

    Article  CAS  PubMed  Google Scholar 

  • Yellen G, Jurman ME, Abramson T, MacKinnon R (1991) Mutations affecting internal TEA blockade identify the probable pore-forming region of a K’ channel. Science 251: 939–942

    Article  CAS  PubMed  Google Scholar 

  • Yool AJ, Schwarz TL (1991) Alteration of ionic selectivity of a K+ channel by mutation of the H5 region. Nature 349: 700–704

    Article  CAS  PubMed  Google Scholar 

  • Zimmer M, Fink TM, Franke Y, Lichter P, Spiess J (1995) Cloning and structure of the gene encoding the human N-methyl-D-aspartate receptor (NMDAR-1). Gene 159: 219–223

    Article  CAS  PubMed  Google Scholar 

  • Zuo J, Dejager PL, Takahashi KA, Jiang WN, Linden DJ, Heintz N (1997) Neurodegeneration in lurcher mice caused by mutation in 82 glutamate receptor gene. Nature 388: 769–773

    Article  CAS  PubMed  Google Scholar 

  • Zuo J, Wollmuth L, Beck C, Seeburg P, Heintz N, Kuner T (1998) Glutamate receptor delta 2 subunit (grid2) with lurcher mutation forms an AMPA-like channel. Soc Neurosci Abstr 24: 841

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hollmann, M. (1999). Structure of Ionotropic Glutamate Receptors. In: Jonas, P., Monyer, H. (eds) Ionotropic Glutamate Receptors in the CNS. Handbook of Experimental Pharmacology, vol 141. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-08022-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-08022-1_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08539-0

  • Online ISBN: 978-3-662-08022-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics