Microscopic Treatment of Surface Phenomena

  • Klaus Christmann
Part of the Topics in Physical Chemistry book series (TOPPHYSCHEM, volume 1)


When dealing with surface — gas interaction we again recall that the complete thermodynamic system consists, in the simplest case, of three phases, namely, the solid (bulk) phase of the substrate (for example, a metal or alloy crystal), the gas phase (containing one or more individual gases), and a two-dimensional interface at the boundary: gas — solid. We have, in the preceding chapter, stated that with chemically sufficiently active gases and/or at low enough temperatures this boundary face is enriched in one or more constituents of the gas phase, a process which we have called adsorption. We have also seen that well-defined thermodynamic relationships hold for the various phase equilibria. The knowledge of heats and entropies of adsorption can provide some insight in the microscopic structure of the adsorption systems, but much more powerful in this respect is the microscopic approach, which we shall pursue in this chapter. In the first part, we shall describe some of the physical properties of the phases involved, whereby, in the beginning, the clean substrate phase and thereafter the adsorbate phase deserve the greatest attention. For the sake of brevity, we shall not expand too much on the derivation of the fundamental physical laws and relations which can be found in the respective textbooks; instead, we would like to develop a basic understanding of how the macroscopic properties can be deduced from the microscopic (atomistic) behavior of matter.


Adsorption Site Chem Phys Adsorption Energy Surface Diffusion Potential Energy Curve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kittel C (1966) Introduction to Solid State Physics, 3rd edn. Wiley, New YorkGoogle Scholar
  2. 2.
    Kleber W (1959) Einführung in die Kristallographie, 3. Aufl. VEB Verlag Technik, BerlinGoogle Scholar
  3. 3.
    Ziman JM (1972) Principles of the Theory of Solids, 2nd edn. Cambridge University Press, CambridgeGoogle Scholar
  4. 4.
    Woolfson MM (1970) An Introduction to X-ray Crystallography, Cambridge University Press, CambridgeGoogle Scholar
  5. 5.
    Wilson AJC (1962) X-ray Optics. Methnen’s Monographs on Physical Subjects. Wiley, New YorkGoogle Scholar
  6. 6.
    Wood EA (1964) Crystals and Light. Van Nostrand, Princeton, NJGoogle Scholar
  7. 7.
    Raaz F (1975) Röntgenkristallographie. De Gruyter, BerlinGoogle Scholar
  8. 8.
    Atkins PW (1982) Physical Chemistry, 2nd edn. Oxford University Press, OxfordGoogle Scholar
  9. 9.
    Moore WJ (1963) Physical Chemistry, 4th edn. Longman, LondonGoogle Scholar
  10. 10.
    Alonso M, Finn EJ (1978) Fundamental University Physics, ninth printing, vol 3, Quantum and Statistical Physics. Addison-Wesley, Reading, MAGoogle Scholar
  11. 11.
    Binnig G, Rohrer H (1984) Scanning Tunneling Microscopy. Physica 127 B:37–45Google Scholar
  12. 11a.
    Behm RJ, Hösler W (1986) In: Vanselow R, Howe R (eds) Chemistry and Physics of Solid Surfaces VI. Springer, Berlin, p 361Google Scholar
  13. 12.
    Wintterlin J, Brune H, Höfer H, Behm RJ (1988) Atomic Scale Characterization of Oxygen Adsorbates on Al(111) by Scanning Tunneling Microscopy. Appl Phys A47:99–102Google Scholar
  14. 13.
    Müller K (1986) Relaxation and Reconstruction of Solid Surfaces. Ber Bunsenges Phys Chem 90:184–190Google Scholar
  15. 14.
    Adams DL, Nielsen BH, Andersen NJ (1983) Quantitative Analysis of LEED Measurements. Physica Scripta T 4:22–28Google Scholar
  16. 15.
    Davis LH, Noonan JR (1983) Multilayer Relaxation in Metallic Surfaces as Demonstrated by LEED Analysis. Surface Sci 126:245–252Google Scholar
  17. 16.
    Andersen NJ, Nielsen HB, Petersen L, Adams DL (1984) Oscillatory Relaxation of the Al(110) Surface. J Phys C: Solid State Phys 17:173–192Google Scholar
  18. 17.
    Noonan JR, Davis HL (1984) Truncation-induced Multilayer Relaxation of the Al(110) Surface. Phys Rev B29:4349–4355Google Scholar
  19. 18.
    Sokolov J, Shi HD, Bardi U, Jona F, Marcus PM (1984) Multilayer Relaxation of Body-centered-cubic Fe(211) J Phys C: Solid State Phys 17:371–383Google Scholar
  20. 19.
    Sokolov J, Jona F, Marcus PM (1984) Trends in Metal Surface Relaxation. Solid State Commun 49:307–312Google Scholar
  21. 20.
    Gauthier Y, Baudoing R, Joly Y, Gaubert C, Rundgren J (1984) Multilayer Relaxation of Ni(110) Analysed by LEED and Metric Distances. J Phys C: Solid State Phys 17:4547–4558.Google Scholar
  22. 21.
    Adams DL, Moore WT, Mitchell KAR (1985) Multilayer Relaxation of the Ni(311) Surface: A New LEED Analysis. Surface Sci 149:407–422Google Scholar
  23. 22.
    Noonan JR, Davis HL (1981) LEED Analysis of Ag(110) — Second Interlayer Spacing Expansion. Bull Am Phys Soc 26:224Google Scholar
  24. 23.
    Davis HL, Zehner DM (1980) Structure of the Clean Re(1010) Surface. J Vac Sci Technol 17:190–193Google Scholar
  25. 24.
    Christmann K (1987) Relaxation and Reconstruction: How Metal Surfaces Respond to the Chemisorption of Gases. Z Phys Chem NF 154:145–178Google Scholar
  26. 25.
    King DA (1983) Clean and Adsorbate-induced Surface Phase Transitions on W(100) Physica Scripta T4:34–43Google Scholar
  27. 26.
    Chan CM, van Hove MA (1986) Confirmation of the Missing-row Model with Three-layer Relaxations for the Reconstructed Ir(110)-(1×2) Surface. Surface Sci 171:226–238Google Scholar
  28. 27.
    Christmann K, Heinz K (eds) (to appear in 1991) Reconstruction of Solid Surfaces. Springer, BerlinGoogle Scholar
  29. 28.
    Alan G (1987) Atomic Surface Relaxation. Progr Surf Sci 25:43–56Google Scholar
  30. 29.
    Inglesfield EJ (1985) Reconstructions and Relaxations on Metal Surfaces. Progr Surf Sci 20:105164Google Scholar
  31. 30.
    Foiles SM (1987) Reconstruction of fcc (110) Surfaces. Surface Sci 191:L779–L786Google Scholar
  32. 31.
    Somorjai GA (1981) Chemistry in Two Dimensions: Surfaces. Cornell University Press, Ithaca, NYGoogle Scholar
  33. 32.
    Lang B, Joyner RW, Somorjai GA (1972) Low Energy Electron Diffraction Studies of High Index Crystal Surfaces of Platinum. Surface Sci 30:440–453Google Scholar
  34. 33.
    van Hove MA, Somorjai GA (1980) A New Microfacet Notation for High-Miller-Index Surfaces of Cubic Materials with Terrace, Step and Kink Structures. Surface Sci 92:489–518Google Scholar
  35. 34.
    Benard J (ed) (1983) Adsorption on Metal Surfaces. Studies in Surface Science and Catalysis 13, Elsevier, Amsterdam, p 11Google Scholar
  36. 35.
    Muetterties EL, Rhodin TN, Band E, Brucker CF, Pretzer WR (1979) Clusters and Surfaces. Chem Rev 79:91–137Google Scholar
  37. 36.
    Burch R (1988) In: Páal Z, Menon PG (eds) Hydrogen Effects in Catalysis. Dekker, New YorkGoogle Scholar
  38. 37.
    Bond GC (1987) Heterogeneous Catalysis, Principles and Applications, 2nd edn. Oxford Science Publications, Clarendon Press, Oxford, p 72Google Scholar
  39. 38.
    Sachtler WMH, Dorgelo GJH, Jongepier R (1965) Phase Composition and Work Function of Vacuum-deposited Copper-nickel Alloy Films. J Catal 4:100–102;Google Scholar
  40. 38a.
    Sachtler WMH, Dorgelo GJH, Jongepier R (1965) The Surface of Copper-Nickel Alloy Films. II Phase Equilibrium and Distribution and their Implications for Work Function, Chemisorption, and Catalysis. J Catal 4:665–671Google Scholar
  41. 39.
    Sachtler WMH, van Santen RA (1977) Surface Composition and Selectivity of Alloy Catalysts. Adv Catal Rel Subj 26:69–119Google Scholar
  42. 40.
    Ponec V (1975) Selectivity in Catalysis by Alloys. Catal Rev Sci Eng 11:41–70Google Scholar
  43. 41.
    Ponec V (1983) Catalysis by Alloys in Hydrocarbon Reaction. Adv Catal Rel Subj 32:149–214Google Scholar
  44. 42.
    Sinfelt JH (1983) Bimetallic Catalysts. Wiley, New YorkGoogle Scholar
  45. 43.
    Dalla Betta RA, Cusamano JA, Sinfelt JH (1970) Cyclopropane-hydrogen Reaction over the Group VIII Noble Metals. J Catal 19:343–349Google Scholar
  46. 44.
    Sinfelt JH, Carter JL, Yates DCJ (1972) Catalytic Hydrogenolysis and Dehydrogenation over Copper-nickel Alloys. J Catal 24:283–296Google Scholar
  47. 45.
    Sinfelt JH (1973) Supported “Bimetallic Cluster” Catalysts. J Catal 29:308–315Google Scholar
  48. 46.
    Sinfelt JH, Lam YL, Cusamano JA, Barnett AE (1976) Nature of Ruthenium-copper Catalysts. J Catal 42:227–237Google Scholar
  49. 47.
    Prestridge EB, Via GH, Sinfelt JH (1977) Electron Microscopy Studies of Metal Clusters: Ru, Os, Ru-Cu, and Os-Cu. J Catal 50:115–123Google Scholar
  50. 48.
    Sinfelt JH, Via GH, Lytle FW (1980) Structure of Bimetallic Clusters. Extended X-ray Absorption Fine Structure (EXAFS) Studies of Ru-Cu Clusters. J Chem Phys 72:4832–4844;Google Scholar
  51. 48a.
    Sinfelt JH, Via GH, Lytle FW (1982) Structure of Bimetallic Clusters. Extended X-ray Absorption Fine Structure (EXAFS) Studies of Pt-Ir Clusters. J Chem Phys 76:2779–2789Google Scholar
  52. 49.
    Christmann K, Ertl G, Shimizu H (1980) Model Studies on Bimetallic Cu/Ru Catalysts. I. Cu on Ru(0001). J Catal 61:397–411Google Scholar
  53. 50.
    Shimizu H, Christmann K, Ertl G (1980) Model Studies on Bimetallic Cu/Ru Catalysts. II. Adsorption of Hydrogen. J Catal 61:412–429Google Scholar
  54. 51.
    Yates JT, Peden CFH, Goodman DW (1985) Copper Site Blocking of Hydrogen Chemisorption on Ruthenium. Catal 94:56–580Google Scholar
  55. 52.
    Goodman DW, Peden CFH (1985) Hydrogen Spillover from Ruthenium to Copper in Cu/Ru Catalysts: A Potential Source of Error in Active Metal Titration. J Catal 95:321–324Google Scholar
  56. 53.
    Wood EA (1964) Vocabulary of Surface Crystallography. Appl Phys 35:1306–1312Google Scholar
  57. 54.
    Park RL, Madden HH (1968) Annealing Changes on the (100) Surface of Palladium and their Effect on CO Adsorption. Surface Sci 11:188–202Google Scholar
  58. 55.
    Nicolle J (1954) Die Symmetrie und ihre Anwendungen, Deutscher Verlag der Wissenschaften, BerlinGoogle Scholar
  59. 56.
    Cotton FA (1971) Chemical Applications of Group Theory, 2nd edn. Wiley, New YorkGoogle Scholar
  60. 57.
    Sachtler WMH (1973) Surface Composition of Alloys in Equilibrium. Le Vide 164:67–71Google Scholar
  61. 58.
    van der Planck P, Sachtler WMH (1967) Surface Composition of Equilibrated Copper-nickel Alloy Films. J Catal 7:300–303;Google Scholar
  62. 58a.
    van der Planck P, Sachtler WMH (1968) Interaction of Benzene with Protium and Deuterium on Copper-nickel Films with Known Surface Composition. J Catal 12:35–44Google Scholar
  63. 59.
    Balandin AA (1958) The Nature of Active Centers and the Kinetics of Catalytic Dehydrogenation. Adv Catal Rel Subj 10:96–129;Google Scholar
  64. 59a.
    Balandin AA (1969) Modern State of the Multiplet Theory of Heterogeneous Catalysis. Adv Catal Rel Subj 19:1–210Google Scholar
  65. 60.
    Mate CM, Somorjai GA (1985) Carbon Monoxide induced Ordering of Benzene on Pt(111) and Rh(111) Crystal Surfaces. Surface Sci 160:542–560Google Scholar
  66. 61.
    Morrison J, Lander JJ (1966) Ordered Physisorption of Xenon on Graphite. Surface Sci 5:163–165Google Scholar
  67. 62.
    Lee J, Cowan JP, Wharton L (1983) He Diffraction from Clean Pt(111) and (1 × 1)H/Pt(111) Surface. Surface Sci 130:1–28Google Scholar
  68. 63.
    Lindroos M, Pfnür H, Feulner P, Menzel D (1987) A Study of the Adsorption Sites of Hydrogen on Ru(001) at Saturation Coverage by Electron Reflection. Surface Sci 180:237–251Google Scholar
  69. 64.
    Ehsasi M, Christmann K (1988) The Interaction of Hydrogen with a Rhodium(110) Surface. Surface Sci 194:172–198Google Scholar
  70. 65.
    Lauth G, Schwarz E, Christmann K (1989) The Adsorption of Hydrogen on a Ruthenium (l 0T0) Surface. J Chem Phys 91:3729–3743Google Scholar
  71. 66.
    Oed W, Puchta W, Bickel N, Heinz K, Nichtl W, Müller K (1988) Full-Coverage Adsorption Structure of H/Rh(110). J Phys C 21:237–234Google Scholar
  72. 67.
    van Hove MA (1979) Surface Crystallography and Bonding. In: Rhodin TN, Ertl G (eds) The Nature of the Surface Chemical Bond. North Holland, Amsterdam, pp 277–311Google Scholar
  73. 68.
    van Hove MA, Tong SY (1979) Surface Crystallography by LEED. Springer, BerlinGoogle Scholar
  74. 69.
    Marcus PM, Jona F (eds) (1984) Determination of Surface Structure by LEED. Plenum Press, New YorkGoogle Scholar
  75. 70.
    Christmann K, Behm RJ, Ertl G, van Hove MA, Weinberg WH (1979) Chemisorption Geometry of Hydrogen on Ni(111): Order and Disorder. J Chem Phys 70:4168–4184Google Scholar
  76. 71.
    Lindroos M, Pfnür H, Menzel D (1987) Investigation of a Disordered Adsorption System by Electron Reflection: H/Ru(001) at Intermediate Coverages. Surface Sci 192:421–437Google Scholar
  77. 72.
    Heinz K (1989) In: Proc ESF Workshop on “Reconstructive or Asymmetric Adsorption on fcc (100) Metal Surfaces”, Erlangen, p 63Google Scholar
  78. 73.
    Wuttig M, Franchy R, Ibach H (1989) Oxygen on Cu(100) — A case of an Adsorbate induced Reconstruction. Surface Sci 213:103–136Google Scholar
  79. 74.
    Imbihl R, Behm RJ, Ertl G, Moritz W (1982) The Structure of Atomic Nitrogen Adsorbed on Fe(100). Surface Sci 123:129–140Google Scholar
  80. 75.
    Behm RJ, Christmann K, Ertl G, van Hove MA (1980) Adsorption of CO on Pd(100). J Chem Phys 73:2984–2995Google Scholar
  81. 76.
    Lehwald S, Rocca M, Ibach H, Rahman TS (1985) Surface Phonon Dispersion of c(2x2)S on Ni(100). Phys Rev B31:3477–3485Google Scholar
  82. 77.
    van Hove MA, Tong SY (1975) Chemisorption Bond Lengths of Chalcogen Overlayers at a Low Coverage by Convergent Perturbation Methods. J Vac Sci Technol 12:230–233Google Scholar
  83. 78.
    Salwén A, Rundgren J (1975) The Structure of the p(2×2) Tellurium Overlayer on the (001) Surface of Copper investigated by LEED. Surface Sci 53:523–537Google Scholar
  84. 79.
    Christmann K, Penka V, Chehab F, Ertl G, Behm RJ (1984) Dual Path Surface Reconstruction in the H/Ni(110) System. Solid State Commun 51:487–490Google Scholar
  85. 80.
    Cattania MG, Penka V, Behm RJ, Christmann K, Ertl G (1983) Interaction of Hydrogen with a Palladium (110) Surface. Surface Sci 126:382–391Google Scholar
  86. 81.
    Barker RA, Estrup PJ (1978) Hydrogen on Tungsten (100): Adsorbate-induced Surface Reconstruction. Phys Rev Lett 41: 1307–1310Google Scholar
  87. 82.
    Debe MK, King DA (1979) The Clean Thermally Induced W{OO1}(1×1) (2×2)R45° Surface Structure Transition and its Crystallography. Surface Sci 81:193–237Google Scholar
  88. 83.
    Heinz K, Müller K (1982) LEED Intensities — Experimental Progress and New Possibilities of Surface Structure Determination. In: Höhler G (ed) Structural Studies of Surfaces. Springer, Berlin p 39 ffGoogle Scholar
  89. 84.
    Willis RF (1986) Critical Fluctuations on Solid Surfaces. Ber Bunsenges Phys Chem 90:190–197Google Scholar
  90. 85.
    Frenken JWM, Krans RL, van der Veen JF, Holub-Krappe E, Horn K (1987) Missing-row Surface Reconstruction of Ag(110) Induced by Potassium Adsorption. Phys Rev Lett 59:2307–2310Google Scholar
  91. 86.
    Behm RJ, Thiel PA, Norton PR, Ertl G (1983) The Interaction of CO and Pt(100) I. Mechanism of Adsorption and Pt Phase Transition. J Chem Phys 78:7437–7447Google Scholar
  92. 86a.
    Behm RJ, Thiel PA, Norton PR, Ertl G (1983) The Interaction of CO and Pt(100) II. Energetic and Kinetic Parameters. J Chem Phys 78:7448–7458Google Scholar
  93. 87.
    Christmann K, Ertl G (1973) Interaction of CO and O2 with Ir(110) Surfaces. Z Naturf 28a:1144–1148Google Scholar
  94. 88.
    Lennard-Jones JE (1932) Processes of Adsorption and Diffusion on Solid Surfaces. Trans Faraday Soc 28:333Google Scholar
  95. 89.
    Dunken HH Lygin VI (eds) (1978) Quantenchemie der Adsorption an Festkörperoberflächen, Verlag Chemie, WeinheimGoogle Scholar
  96. 90.
    Hoffmann R (1988) Solids and Surfaces — A Chemists View of Bonding in Extended Structures. Verlag Chemie, WeinheimGoogle Scholar
  97. 91.
    Slater JC (1974), The Self-consistent Field for Molecules and Solids. McGraw-Hill, New YorkGoogle Scholar
  98. 92.
    Christmann K, Ertl G, Schober O (1974) Adsorption of CO on a Ni(111) Surface. J Chem Phys 60:4719–4724Google Scholar
  99. 93.
    Tracy JC, Palmberg PW (1969) Structural Influences on Adsorbate Binding Energy. I. Carbon Monoxide on (100) Palladium. J Chem Phys 51:4852–4862Google Scholar
  100. 94.
    Ertl G, Koch J (1970) Adsorption von CO auf einer Palladium(111) Oberfläche. Z Naturf 25a:1906–1911Google Scholar
  101. 95.
    Pfnür H, Feulner P, Engelhardt HA, Menzel D (1978) An Example of “Fast” Desorption: Anomalously High Pre-exponentials for CO Desorption from Ru(001). Chem Phys Lett 59:481–486Google Scholar
  102. 96.
    Lauth G, Solomun T, Hirschwald W, Christmann K (1989) The Interaction of Carbon Monoxide with a Ruthenium(10T0) Surface. Surface Sci 210:201–224Google Scholar
  103. 97.
    Blyholder G (1964) Molecular Orbital View of Chemisorbed Carbon Monoxide. J Phys Chem 68:2772–2778Google Scholar
  104. 98.
    Tracy JC (1972) Structural Influences on Adsorption Energy. III. CO on Cu(100). J Chem Phys 56:2748–2754Google Scholar
  105. 99.
    Tracy JC (1972) Structural Influences on Adsorption Energy. II. CO on Ni(100). J Chem Phys 56:2736–2747Google Scholar
  106. 100.
    Christmann K (1988) Interaction of Hydrogen with Solid Surfaces. Surface Sci Repts 9:1–163Google Scholar
  107. 101.
    Christmann K, Schober O, Ertl G, Neumann M (1974) Adsorption of Hydrogen on Nickel Single Crystal Surfaces. J Chem Phys 60:4528–4540Google Scholar
  108. 102.
    Rinne H (1974) Absolutmessungen der Adsorption von Wasserstoff an der Nickel(111)-Fläche und an ultradünnen Nickelfilmen, PhD thesis, Universität HannoverGoogle Scholar
  109. 103.
    Behm RJ, Christmann K, Ertl G (1980) Adsorption of Hydrogen on Pd(100). Surface Sci 99:320–340Google Scholar
  110. 104.
    Conrad H, Ertl G, Latta EE (1974) Adsorption of Hydrogen on Palladium Single Crystal Surfaces. Surface Sci 41:435–446Google Scholar
  111. 105.
    Ernst KH (1990) Die geometrischen und elektronischen Strukturen der Adsorbatphasen von Wasserstoff auf der Kobalt(1O1̄O)-Oberfläche. PhD thesis, Freie Universität BerlinGoogle Scholar
  112. 105a. Ernst KH, Christmann K (1991) to be publishedGoogle Scholar
  113. 106.
    Melius CF, Moskowitz JW, Mortola AP, Baillie MB, Ratner MA (1976) A Molecular Complex Model for the Chemisorption of Hydrogen on a Nickel Surface. Surface Sci 59:279–292Google Scholar
  114. 107.
    Nørskov JK, Stoltze P (1987) Theoretical Aspects of Surface Reactions. Surface Sci 189/190:91–105Google Scholar
  115. 108.
    Harris J, Andersson S(1985) H2 Dissociation at Metal Surfaces. Phys Rev Lett 55:1583–1586Google Scholar
  116. 109.
    Polyani JC (1987) Some Concepts in Reaction Dynamics. Science 236:680–690Google Scholar
  117. 109a.
    Manz J (1989) Mode Selective Bimolecular Reactions. In: Molecules in Physics, Chemistry and Biology, vol III. Kluwer, New York, pp 165–404Google Scholar
  118. 110.
    Harris J (1988) On the Adsorption and Desorption of H2 at Metal Surfaces. Appl Phys A47:63–71Google Scholar
  119. 111.
    Balooch M, Cardillo MJ, Miller DR, Stickney RE (1974) Molecular Beam Study of the Apparent Activation Barrier Associated with Adsorption and Desorption of Hydrogen on Copper. Surface Sci 46:358–392Google Scholar
  120. 112.
    Kubiak GD, Sitz GO, Zare RN (1985) Recombinative Desorption Dynamics: Molecular Hydrogen from Cu(110) J Chem Phys 83:2538–2551Google Scholar
  121. 113.
    Anger P, Winkler A, Rendulic KD (1989) Adsorption and Desorption Kinetics in the System H2/Cu(111) H2/Cu(110) and H2/Cu(100). Surface Sci 220:1–17Google Scholar
  122. 114.
    Berger HF, Leisch M, Winkler A, Rendulic KD (1990) A Search for Vibrational Contributions to the Activated Adsorption of H2 on Copper. Chem Phys Lett 175:425 –428Google Scholar
  123. 115.
    Grimley TB (1967) The Indirect Interaction between Atoms or Molecules Adsorbed on Metals. Proc Phys Soc 90:751Google Scholar
  124. 116.
    Grimley TB, Torrini M (1973) The Interaction between Two Hydrogen Atoms Adsorbed on (100) Tungsten. J Phys C6:868–872Google Scholar
  125. 117.
    Einstein TL, Schrieffer JR (1973) Indirect Interaction between Adatoms on a Tight Binding Solid. Phys Rev B7:3629–3648Google Scholar
  126. 118.
    Park RL, Einstein TL, Kortan AR, Roelofs LD (1980) Multi-critical Phase Diagram of a Chemisorbed Lattice Gas System-O/Ni(111). In: Sinha SK (ed) Ordering in Two Dimensions. North Holland, Amsterdam, p 17–24Google Scholar
  127. 119.
    Hill TL (1962) Introduction to Statistical Thermodynamics, 2nd printing. Addison-Wesley, Reading, MAGoogle Scholar
  128. 120.
    Gebhardt W, Krey U (1980) Phasenübergange und kritische Phänomene. Vieweg, BraunschweigGoogle Scholar
  129. 121.
    Kortüm G (1972) Einführung in die Chemische Thermodynamik, 6th edn. Vandenhoeck und Ruprecht, Göttingen, p 335 ffGoogle Scholar
  130. 122.
    Bauer E (1987) Phase Transitions on Single-crystal Surfaces and in Chemisorbed Layers. In: Schommers W, von Blanckenhagen P (eds). Structure and Dynamics of Surfaces II. Springer, Berlin, pp 115–179Google Scholar
  131. 123.
    Christmann K, Ertl G (1976) Interaction of Hydrogen with Pt(111): The Role of Atomic Steps. Surface Sci 60:365–384Google Scholar
  132. 124.
    Poelsema B, Verheij LK, Comsa G (1985) Temperature Dependency of the Initial Sticking Probability of H2 and CO on Pt(111). Surface Sci 152/153:496–504Google Scholar
  133. 125.
    Rendulic KD (1988) The Influence of Surface Defects on Adsorption and Desorption. Appl Phys A47:55–62Google Scholar
  134. 126.
    Russel, Jr. JN, Chorkendorff I, Lanzilotto AM, Alvey MD, Yates, JT Jr. (1986) Angular Distributions of H2 Thermal Desorption: Coverage Dependence on Ni(111). J Chem Phys 85:6186–6191Google Scholar
  135. 127.
    Salmeron M, Gale RJ, Somorjai GA (1977) Molecular Beam Study of the H2-D2 Exchange Reaction on Stepped Platinum Crystal Surfaces: Dependence on Reactant Angle of Incidence. J Chem Phys 67:5324–5334Google Scholar
  136. 128.
    Engel T, Ertl G (1978) A Molecular Beam Investigation of the Catalytic Oxidation of CO on Pd, J Chem Phys 69: 1267–1281Google Scholar
  137. 129.
    Engel T (1979) Molekularstrahluntersuchungen der Adsorption und Reaktion von H2, O2 und CO an einer Pd(111) Oberfläche. Habilitationsschrift, Universität MünchenGoogle Scholar
  138. 130.
    Morris MA, Bowker M, King DA (1984) Kinetics of Adsorption, Desorption and Diffusion at Metal Surfaces, In: Bamford CH, Tipper CFH, Compton RG (eds) Simple Processes at the Gas-solid Interface, vol 19, Elsevier Amsterdam, p 1–179Google Scholar
  139. 131.
    Lapujoulade J, Neil KS (1973) Hydrogen Adsorption on Ni(100) Surface Sci 35:288–301Google Scholar
  140. 132.
    Christmann K (1979) Adsorption of Hydrogen on a Nickel (100) Surface. Z Naturf A34:22–29Google Scholar
  141. 133.
    Lapujoulade J, Neil KS (1972) Chemisorption of Hydrogen on the (111) Plane of Nickel. Chem Phys 57:3535–3545Google Scholar
  142. 134.
    Christmann K, Ertl G, Pignet T (1976) Adsorption of Hydrogen on a Pt(111) Surface. Surface Sci 54:365–392Google Scholar
  143. 135.
    Poelsema B, Lenz K, Brown LS, Verheij LK, Comsa G (1986) Wasserstoff auf Pt(111): Haftwahrscheinlichkeit und Stufenkonzentration. Verh DPG 5:1378Google Scholar
  144. 136.
    Penka V, Christmann K, Ertl G (1984) Ordered Low-temperature Phases in the H/Ni(110) System. Surface Sci 136:307–318Google Scholar
  145. 137.
    Robota HJ, Vielhaber W, Lin MC, Segner J, Ertl G (1985) Dynamics of Interaction of H2 and D2 with Ni(110) and Ni(111) Surfaces. Surface Sci 155:101–120Google Scholar
  146. 138.
    Hofmann P, Unwin R, Wyrobisch W, Bradshaw AM (1978) The Adsorption and Incorporation of Oxygen on Cu(100) at T ≥ 300 K. Surface Sci 72:635–644Google Scholar
  147. 139.
    Holloway PJ, Hudson JB (1974) Kinetics of the Reaction of Oxygen with Clean Nickel Single Crystal Surfaces. Surface Sci 43:123–140Google Scholar
  148. 140.
    Netzer FP, Wille RA (1978) Adsorption Studies on a Stepped Pt(111) Surface: O2, CO, C2H4, C2N2. Surface Sci 74:547–567Google Scholar
  149. 141.
    Ibach H, Erley W, Wagner H (1980) The Pre-exponential Factor in Desorption — CO on Ni(111) Surface Sci 92:29–42Google Scholar
  150. 142.
    Engel T (1978) A Molecular Beam Investigation of He, CO, and O2 Scattering from Pd(111) J Chem. Phys 69:373–385Google Scholar
  151. 143.
    Ertl G, Neumann M, Streit KM (1977) Chemisorption of CO on the Pt(111) Surface. Surface Sci 64:393–410Google Scholar
  152. 144.
    Kisliuk PJ (1957) The Sticking Probabilities of Gases Chemisorbed on the Surfaces of Solids. J Phys Chem Solids 3:95 –101Google Scholar
  153. 144a.
    Kisliuk PJ (1958) The Sticking Probabilities of Gases Chemisorbed on the Surfaces of Solids. J Phys Chem Solids 5:78–84Google Scholar
  154. 145.
    King DA (1975) Thermal Desorption from Metal Surfaces: A Review. Surface Sci 47:384–402Google Scholar
  155. 145a.
    King DA (1977) The Influence of Weakly Bound Intermediate States on Thermal Desorption Kinetics. Surface Sci 64:43–51Google Scholar
  156. 146.
    Gorte R, Schmidt LD (1978) Desorption Kinetics with Precursor Intermediates. Surface Sci 76:559–573Google Scholar
  157. 147.
    Schönhammer K (1979) On the Kisliuk Model for Adsorption and Desorption Kinetics. Surface Sci 83:L633–L636Google Scholar
  158. 148.
    Péterman LA (1972) Thermal Desorption Kinetics of Chemisorbed Gases, Progress in Surface Science, vol 3. Pergamon Press, Oxford, pp 2–61Google Scholar
  159. 149.
    Menzel D (1975) Desorption Phenomena. In: Gomer R (ed) Interactions on Metal Surfaces. Springer, Berlin, pp 101–142Google Scholar
  160. 150.
    Gortel ZW, Kreuzer HJ, Spaner D (1980) Quantum Statistical Theory of Flash Desorption. J Chem Phys 72:234–246Google Scholar
  161. 151.
    Kreuzer HJ, Gortel ZW (1986) Physisorption Kinetics. Springer, BerlinGoogle Scholar
  162. 152.
    Conrad H (1976) Wechselwirkung von Gasen mit einer Pd(111)-Oberfläche. PhD thesis, Universität MünchenGoogle Scholar
  163. 153.
    Yates, JT Jr, Thiel PA, Weinberg WH (1979) The Chemisorption of Hydrogen on Rh(111) Surface Sci 84:427–439Google Scholar
  164. 154.
    Zitdan PA, Bereskov GK, Baronin Al (1976) An XPS and UPS Investigation of the Chemisorption of CO on Ir(111) Chem Phys Lett 44:528–532Google Scholar
  165. 155.
    Campbell CT, Ertl G, Kuipers H, Segner J (1981) A Molecular Beam Investigation of the Interactions of CO with a Pt(111) Surface. Surface Sci 107:207–236Google Scholar
  166. 156.
    Bowker M (1980) The Effect of Lateral Interactions on the Desorption of Oxygen from Ag(110) Surface Sci 100:L472–L474Google Scholar
  167. 157.
    Taylor JL, Ibbotson DF, Weinberg WH (1979) The Chemisorption of Oxygen on the (110) Surface of Iridium. Surface Sci 79:349–384Google Scholar
  168. 158.
    Klein R, Shih A (1977) Chemisorption and Decomposition of Nitric Oxide on Ruthenium. Surface Sci 69:403–427Google Scholar
  169. 159.
    Cassuto A, King DA (1981) Rate Expressions for Adsorption and Desorption Kinetics with Precursor States and Lateral Interactions. Surface Sci 102:388–404Google Scholar
  170. 160.
    Alnot M, Cassuto A (1981) Analysis of Computed TPD Curves Involving a Precursor State: Influence of the Method on the Parameters of the Adsorbate. Surface Sci 112:325–342Google Scholar
  171. 161.
    Tamm PW, Schmidt LD (1969) Interaction of H2 with (100) W. I. Binding States. J Chem Phys 51:5352–5363Google Scholar
  172. 161a.
    Tamm PW, Schmidt LD (1970) Interaction of H2 with (100) W. II. Condensation. J Chem Phys 52:1150–1160Google Scholar
  173. 162.
    Constable FH (1952) The Mechanism of Catalytic Decomposition, Proc Roy Soc (London) A108:355Google Scholar
  174. 163.
    Cremer E (1955) The Compensation Effect in Heterogeneous Catalysis. Adv Catal Rel Subj 7:75–91Google Scholar
  175. 164.
    Armand G, Lapujoulade J (1967) Le facteur preexponentiel en cinetique de desorption gaz-solide. Surface Sci 6:345–361Google Scholar
  176. 165.
    Bonzel HP (1971) Auger Electron Spectroscopy Study of a Sulfur-Oxygen Surface Reaction on a Cu(110) Crystal. Surface Sci 27:387–410Google Scholar
  177. 166.
    Bonzel HP, Ku R (1973) Adsorbate Interactions on a Pt(110) Surface. II: Effect of Sulfur on the Catalytic CO Oxidation. J Chem Phys 59:1641–1651Google Scholar
  178. 167.
    Bonzel HP, Latta EE (1978) Surface Self-diffusion on Ni(110): Temperature Dependence and Directional Anisotropy. Surface Sci 76:275–295Google Scholar
  179. 168.
    Butz R, Wagner H (1979) Surface Diffusion of Pd and Au on W Single Crystal Planes I. Spreading Behavior of Pd and Au Layers. Surface Sci 87:6984Google Scholar
  180. 168a.
    Butz R, Wagner H (1979) Surface Diffusion of Pd and Au on W Single Crystal Planes II. Anisotropy of Palladium Surface Diffusion due to the Influence of Substrate Structure. Surface Sci 87:85–100Google Scholar
  181. 169.
    Ehrlich G (1974) In: Jayadenaah TS, Vanselow R (eds) Surface Science: Recent Progress and Perspectives. CRC Press, Cleveland, OhioGoogle Scholar
  182. 170.
    Hölzl J, Porsch G (1975) Contact Potential Difference Measurements on Polycrystalline Ni during and after Deposition with Evaporated Ni in the Temperature Range 230° ≤ T 450°C, Thin Solid Films 28:93–106Google Scholar
  183. 171.
    Schrammen P, Hölzl J (1983) Investigation of Surface Self-diffusion of Ni Atoms on the Ni(100) Plane by means of Work Function Measurements and Monte Carlo Calculations. Surface Sci 130:203–228Google Scholar
  184. 172.
    Gomer R, Hum JK (1957) Adsorption and Diffusion of Oxygen on Tungsten. Chem Phys 27:1363–1376Google Scholar
  185. 173.
    Gomer R, Wortman R, Lundy R (1957) Mobility and Adsorption of Hydrogen on Tungsten. J Chem Phys 26:1147–1164Google Scholar
  186. 174.
    Drechsler M (1982) In: Binh TV (ed) Surface Mobilities. Plenum Press, New YorkGoogle Scholar
  187. 175.
    Chen JR, Gomer R (1979) Mobility of Oxygen on the (110) Plane of Tungsten. Surface Sci 79:413–444Google Scholar
  188. 176.
    Wang SC, Gomer R (1985) Diffusion of Hydrogen, Deuterium, and Tritium on the (110) Plane of Tungsten. J Chem Phys 83:4193–4209Google Scholar
  189. 177.
    Ertl G, Neumann M (1972) Laser-induzierte schnelle thermische Desorption von Festkörper-Oberflächen. Z Naturf 27a:1607–1610Google Scholar
  190. 178.
    Mullins DR, Roop B, Costello SA, White JM (1987) Isotope Effects in Surface Diffusion. Hydrogen and Deuterium on Ni(100) Surface Sci 186:67–74Google Scholar
  191. 179.
    Seebauer EG, Kong ACF, Schmidt LD (1988) Surface Diffusion of Hydrogen and CO on Rh(111): Laser-induced Thermal Desorption Studies. J Chem Phys 88:6597–6604Google Scholar
  192. 180.
    Boltzmann L (1934) Wien Ann 53:53Google Scholar
  193. 181.
    Fowler RH, Guggenheim EA (1939) Statistical Thermodynamics, Cambridge University Press, CambridgeGoogle Scholar
  194. 182.
    Bowker M, King DA (1980) Oxygen Diffusion on Tungsten Single Crystal Surfaces: Secondary Electron Emission Studies. Surface Sci 94:564–580Google Scholar
  195. 183.
    Love HM, Wiederick HD (1969) Cesium Diffusion at a Tungsten Surface, Can J Phys 47:657–663Google Scholar
  196. 184.
    Schmidt L, Gomer R (1965) Adsorption of Potassium on Tungsten. J Chem Phys 42:3573–3598Google Scholar
  197. 185.
    Polak A, Ehrlich G (1977) Surface Diffusion of Gas Chemisorbed on a Single Crystal Plane: N on W(110). J Vac Sci Technol 14:407Google Scholar
  198. 186.
    Lewis R, Gomer R (1969) Adsorption of Hydrogen on Platinum. Surface Sci 17:333–345Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • Klaus Christmann
    • 1
  1. 1.Institut für Physikalische und Theoretische ChemieFreien Universität BerlinBerlin 33Germany

Personalised recommendations