Computer Investigation of the Influence of the Internal Structure Topology on the Percolation Process in Two- and Three-Dimensional Inhomogeneous Systems

  • Aliaksei Konash
  • Sergey Bagnich
Conference paper
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 32)


In our work the percolation process in two- and three-dimensional inhomogeneous lattices is studied. The inhomogeneous lattice is simulated by a random distribution of obstacles differing in size and number. The influence of obstacles on the parameters (critical concentration, average number of sites in finite clusters, percolation probability, critical exponents, and fractal and spectral dimensions of a finite cluster) characterizing the percolation in the system is analyzed. It is demonstrated that all these parameters essentially depend on the linear size and relative area of the obstacles.


Fractal Dimension Critical Exponent Critical Concentration Linear Size Computer Investigation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fragmentation Form and Flow in Fractured Media, Eds. R. Engelman and Z. Jaeger (IPS, Bristol, 1986 ).Google Scholar
  2. 2.
    Percolation Structures Processes, Ann. Isr. Phys. Soc., Vol.. Eds. G. Deutsher, R. Zallen and J. Adler, (Hilger, Bristol, 1983), 5.Google Scholar
  3. 3.
    B. I. Shklovskiy and A. L. Efros. Percolation theory and conductivity of highly inhomogeneous media, Sov. Phys. Usp. 18 (1975) 845–878.CrossRefGoogle Scholar
  4. 4.
    D. Stauffer. Introduction to Percolation Theory, ( Taylor and Francis, London, 1985 ) 420.MATHCrossRefGoogle Scholar
  5. 5.
    B. I. Shklovskiy, A. L. Efros. Electronic Properties of Doped Semiconductors, ( Springer —Verlag, New York, 1984 ).CrossRefGoogle Scholar
  6. 6.
    R. Kopelman. in Spectroscopy and Exitation Cynamics in Condenced Molecular Systems, Ed. by V.M. Agranovich and R.M. Hochstrasser ( Amsterdam, North-Holland, 1983 ).Google Scholar
  7. 7.
    D. Stauffer. Scaling theory of percolation cluster, Phys. Rep., 54 (1979) 1–74.CrossRefGoogle Scholar
  8. 8.
    Borczyskowski, von C., Kirski, T., Bunsenges, Ber.; Dispersive energy transport in disordered molecular crystals, Phys. Chem. 93 (1989) 1373–1377.CrossRefGoogle Scholar
  9. 9.
    S. A. Bagnich. Triplet excitation migration for compound molecules in solid solutions, Chem. Phys. 185 (1994) 229–236.CrossRefGoogle Scholar
  10. 10.
    S. A. Bagnich. Migration of benzaldehyde triplet excitation in porous matrices, SPIE Proc. 3176 (1997) 212–218.CrossRefGoogle Scholar
  11. 11.
    J. Feder. Fractals ( Plenum, New York, 1988 ) 322.MATHGoogle Scholar
  12. 12.
    M. E. Kainourgiakis, E. S. Kikkinides, A. K. Stubos, N. K. Kanellopoulos. Simulation of self-diffusion of point-like and finite-size tracers in stochastically reconstructed Vycor porous glasses, J. Chem. Phys. 111 (1999) 2735–2743.CrossRefGoogle Scholar
  13. 13.
    M. C. Bujan-Nunez, A. Miguel-Fernandez, M. A. Lopez-Quintela. Diffusion-influenced controlled reaction in an inhomogeneous medium: Small concentration of reagents, J. Chem. Phys. 112 (2000) 8495–8501.CrossRefGoogle Scholar
  14. 14.
    J. Hoshen, R. Kopelman, E. M. Monberg. Percolation and cluster distribution. II. Layers, variable-range interaction, and exciton cluster model, J. Stat. Phys. 19 (1978) 219–242.CrossRefGoogle Scholar
  15. 15.
    B. B. Mandelbrot. The Fractal Geometry of Nature, (W.H. Freeman, New-York, 1983 ) 486.Google Scholar
  16. 16.
    B. B. Mandelbrot. Fractals Encyclopedia of Physics and Technology, 5 (1987) 579.Google Scholar
  17. 17.
    I. M. Sokolov. Dimension and other geometrical critical exponents in the percolation theory, Soy. Phys. Usp. 29 (1986) 924–948.CrossRefGoogle Scholar
  18. 18.
    S. R. Forest, T. A. Witten. Long-range correlation in smoke-particle aggregates, J. Phys. A 12 (1979) L109 - L117.CrossRefGoogle Scholar
  19. 19.
    R. Rammal, G. Toulose. Random walks on fractal structures and percolation clusters, J. Phys. Lett. 44 (1983) 13–22.CrossRefGoogle Scholar
  20. 20.
    S. Alexander, R. Orbach. Density of states on fractals: “tractons”, J. Phys. Lett. (Paris) 43 (1982) 625–631.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Aliaksei Konash
    • 1
  • Sergey Bagnich
    • 1
  1. 1.Institute of Molecular and Atomic PhysicsMinskBelarus

Personalised recommendations