Skip to main content

Computer Investigation of the Influence of the Internal Structure Topology on the Percolation Process in Two- and Three-Dimensional Inhomogeneous Systems

  • Conference paper
Interface and Transport Dynamics

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 32))

  • 628 Accesses

Abstract

In our work the percolation process in two- and three-dimensional inhomogeneous lattices is studied. The inhomogeneous lattice is simulated by a random distribution of obstacles differing in size and number. The influence of obstacles on the parameters (critical concentration, average number of sites in finite clusters, percolation probability, critical exponents, and fractal and spectral dimensions of a finite cluster) characterizing the percolation in the system is analyzed. It is demonstrated that all these parameters essentially depend on the linear size and relative area of the obstacles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fragmentation Form and Flow in Fractured Media, Eds. R. Engelman and Z. Jaeger (IPS, Bristol, 1986 ).

    Google Scholar 

  2. Percolation Structures Processes, Ann. Isr. Phys. Soc., Vol.. Eds. G. Deutsher, R. Zallen and J. Adler, (Hilger, Bristol, 1983), 5.

    Google Scholar 

  3. B. I. Shklovskiy and A. L. Efros. Percolation theory and conductivity of highly inhomogeneous media, Sov. Phys. Usp. 18 (1975) 845–878.

    Article  Google Scholar 

  4. D. Stauffer. Introduction to Percolation Theory, ( Taylor and Francis, London, 1985 ) 420.

    Book  MATH  Google Scholar 

  5. B. I. Shklovskiy, A. L. Efros. Electronic Properties of Doped Semiconductors, ( Springer —Verlag, New York, 1984 ).

    Book  Google Scholar 

  6. R. Kopelman. in Spectroscopy and Exitation Cynamics in Condenced Molecular Systems, Ed. by V.M. Agranovich and R.M. Hochstrasser ( Amsterdam, North-Holland, 1983 ).

    Google Scholar 

  7. D. Stauffer. Scaling theory of percolation cluster, Phys. Rep., 54 (1979) 1–74.

    Article  Google Scholar 

  8. Borczyskowski, von C., Kirski, T., Bunsenges, Ber.; Dispersive energy transport in disordered molecular crystals, Phys. Chem. 93 (1989) 1373–1377.

    Article  Google Scholar 

  9. S. A. Bagnich. Triplet excitation migration for compound molecules in solid solutions, Chem. Phys. 185 (1994) 229–236.

    Article  Google Scholar 

  10. S. A. Bagnich. Migration of benzaldehyde triplet excitation in porous matrices, SPIE Proc. 3176 (1997) 212–218.

    Article  Google Scholar 

  11. J. Feder. Fractals ( Plenum, New York, 1988 ) 322.

    MATH  Google Scholar 

  12. M. E. Kainourgiakis, E. S. Kikkinides, A. K. Stubos, N. K. Kanellopoulos. Simulation of self-diffusion of point-like and finite-size tracers in stochastically reconstructed Vycor porous glasses, J. Chem. Phys. 111 (1999) 2735–2743.

    Article  Google Scholar 

  13. M. C. Bujan-Nunez, A. Miguel-Fernandez, M. A. Lopez-Quintela. Diffusion-influenced controlled reaction in an inhomogeneous medium: Small concentration of reagents, J. Chem. Phys. 112 (2000) 8495–8501.

    Article  Google Scholar 

  14. J. Hoshen, R. Kopelman, E. M. Monberg. Percolation and cluster distribution. II. Layers, variable-range interaction, and exciton cluster model, J. Stat. Phys. 19 (1978) 219–242.

    Article  Google Scholar 

  15. B. B. Mandelbrot. The Fractal Geometry of Nature, (W.H. Freeman, New-York, 1983 ) 486.

    Google Scholar 

  16. B. B. Mandelbrot. Fractals Encyclopedia of Physics and Technology, 5 (1987) 579.

    Google Scholar 

  17. I. M. Sokolov. Dimension and other geometrical critical exponents in the percolation theory, Soy. Phys. Usp. 29 (1986) 924–948.

    Article  Google Scholar 

  18. S. R. Forest, T. A. Witten. Long-range correlation in smoke-particle aggregates, J. Phys. A 12 (1979) L109 - L117.

    Article  Google Scholar 

  19. R. Rammal, G. Toulose. Random walks on fractal structures and percolation clusters, J. Phys. Lett. 44 (1983) 13–22.

    Article  Google Scholar 

  20. S. Alexander, R. Orbach. Density of states on fractals: “tractons”, J. Phys. Lett. (Paris) 43 (1982) 625–631.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Konash, A., Bagnich, S. (2003). Computer Investigation of the Influence of the Internal Structure Topology on the Percolation Process in Two- and Three-Dimensional Inhomogeneous Systems. In: Emmerich, H., Nestler, B., Schreckenberg, M. (eds) Interface and Transport Dynamics. Lecture Notes in Computational Science and Engineering, vol 32. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-07969-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-07969-0_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07320-5

  • Online ISBN: 978-3-662-07969-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics