Skip to main content

Microscopic Parameters and Macroscopic Features of Traffic Flow

  • Conference paper
Interface and Transport Dynamics

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 32))

  • 640 Accesses

Abstract

A major task of traffic modelling is to investigate how traffic parameters on the microscopic scale, such as reaction time and inertia, influence the macroscopic flow phenomena. In this article, we present a transformation that relates microscopic car-following models to their macroscopic continuum counterpart. For a specific type, the optimal-velocity model, it turns out that the related model is analogous in the sense that it fulfills the same linear stability criterion. Moreover, it predicts similar flow patterns for similar traffic situations as they occur at on-ramps or between platoons of vehicles of different fluxes. However, the analysis suggests that reaction time and multi-species flows may have a profound effect on the flow pattern. To date, this has rarely been taken into account in continuum models. This paper points out some of the problems and leaves some open questions regarding macroscopic traffic modelling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kerner, B.S., Konhäuser, P.: Structure and parameters of clusters in traffic flow. Phys. Rev. E 50 (1994) 54–83

    Article  Google Scholar 

  2. Herrmann, M., Kerner, B.S.: Local cluster effect in different traffic flow models. Physica A 255 (1998) 163–188

    Article  Google Scholar 

  3. Nagel, K., Schreckenberg, M.: A cellular automaton model for freeway traffic. J. Phys. I. France 2 (1992) 2221–2229

    Article  Google Scholar 

  4. Berg, P.: Optimal-velocity models of motorway traffic. PhD Thesis, University of Bristol (2001)

    Google Scholar 

  5. Bando, M., Hasebe, K., Nakayama, A., Shibata, A., Sugiyama, Y.: Dynamical model of traffic congestion and numerical simulation. Phys. Rev. E 51 (1995) 1035–1042

    Article  Google Scholar 

  6. Payne, H.J.: FREFLO: a macroscopic simulation model of freeway traffic. Transp. Res. Record 722 (1979) 68–77

    Google Scholar 

  7. Kühne, R.: Macroscopic freeway model for dense traffic–stop-start waves and incident detection. 9th Int. Symp. on Transp. and Traffic Theory, VNU Science Press (1984) 21–42

    Google Scholar 

  8. Sugiyama, Y.: Dynamical model for congestion of freeway traffic and its structural stability. In: Bachem, A., Schreckenberg, M., Wolf, D.E., Traffic and granular flow, World Scientific (1996) 137–150

    Google Scholar 

  9. Berg, P., Mason, A., Woods, A.W.: Continuum approach to car-following models. Phys. Rev. E 61 (2000) 1056–1066

    Article  Google Scholar 

  10. Lee, H.K., Lee, H.W., Kim, D.: Macroscopic traffic models from microscopic car-following models. Phys. Rev. E 64 (2001) 056126

    Google Scholar 

  11. Helbing, D.: From microscopic to macroscopic traffic models. In: Parisi, J., Müller, S C, Zimmermann, W., A perspective look at nonlinear media, Springer (1998) 122–139

    Google Scholar 

  12. Berg, P., Woods, A.W.: Travelling waves of an optimal-velocity model of freeway traffic. Phys. Rev. E 63 (2001) 036107

    Google Scholar 

  13. Berg, P., Woods, A.W.: On-ramp simulations and solitary waves of a car-following model. Phys. Rev. E 64 (2001) 035602

    Google Scholar 

  14. Helbing, D.: Traffic modelling by means of physical concepts. In: Bachem, A., Schreckenberg, M., Wolf, D.E., Traffic and granular flow, World Scientific (1996) 87–104

    Google Scholar 

  15. Hooper, S.: Modification of Bando’s car-following model of highway traffic. MSc Thesis, University of Bristol (2000)

    Google Scholar 

  16. Bando, M., Hasebe, K., Nakanishi, K., Nakayama, A.: Analysis of optimal velocity model with explicit delay. Phys. Rev. E 58 (1998) 5429–5435

    Article  Google Scholar 

  17. Nagatani, T.: Density waves in traffic flow. Phys. Rev. E 61 (2000) 3564–3570

    Article  Google Scholar 

  18. Lee, H.Y., Kim, D., Choi, M.Y.: Continuum model for two-lane traffic flow. In: Schreckenberg, M., Wolf, D.E., Traffic and granular flow ‘87, Springer (1999) 433–438

    Google Scholar 

  19. Kerner, B.S., Rehborn, H.: Experimental properties of phase transitions in traffic flow. Phys. Rev. Lett. 79 (1997) 4030–4033

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Berg, P., Wilson, E. (2003). Microscopic Parameters and Macroscopic Features of Traffic Flow. In: Emmerich, H., Nestler, B., Schreckenberg, M. (eds) Interface and Transport Dynamics. Lecture Notes in Computational Science and Engineering, vol 32. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-07969-0_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-07969-0_32

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07320-5

  • Online ISBN: 978-3-662-07969-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics