Skip to main content

Transport Out of a Gravitationally Stable Layer with the Help of a Faster Diffusing Substance: PDE Simulations and Scaling Laws

  • Conference paper
Interface and Transport Dynamics

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 32))

  • 625 Accesses

Abstract

Hydrodynamic equations of an incompressible fluid with two dissolved substances are integrated to simulate previously reported observations of double diffusive convection. These observations had been performed in a setup that is extremely easy to implement and to observe: a layer consisting of a mixture of a surfactant, glycerine and water is placed below water; fingers arising at the interface transport the surfactant upwards. The calculated mean distance between fingers, as well as their emergence time, both as functions of the initial concentration of glycerine, are described by power laws. These results are in agreement with analytical approximations and with the experimental observations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chen, C. F., Johnson, D. H.: J. Fluid Mech. 138 (1984) 405–416

    Article  Google Scholar 

  2. Huppert, H. E., Turner, J. S.: J. Fluid Mech. 106 (1981) 299–329

    Article  MATH  Google Scholar 

  3. Turner, J. S.: Ann. Rev. Fluid Mech. 6 (1974) 37–56

    Article  Google Scholar 

  4. Schmitt, R. W.: Phys. Fluids 26 (1983) 2373–2377

    Article  MATH  Google Scholar 

  5. Koetter, K., Markus, M.: Europhys. Lett. 55 (2001) 807–813

    Article  Google Scholar 

  6. Williams, A. J.: Science 185 (1974) 941–943

    Article  Google Scholar 

  7. Tait, R. I., Howe, M. R.: Nature 231 (1971) 178–179

    Article  Google Scholar 

  8. Fisher, H.: Water Res. 5 (1971) 909–915

    Article  Google Scholar 

  9. Coriell, S. R., Cordes, M. R., Boettinger, W.J., Sekerka, R.F.: J. Crystal Growth 49 (1980) 13–28

    Article  Google Scholar 

  10. McBirney, A. R., Noyes, R. M.: J. Pet. 20 (1979) 487–554

    Article  Google Scholar 

  11. McBirney, A. R.: J. Volcanol. Geotherm. Res. 7 (1980) 357–371

    Article  Google Scholar 

  12. Schmitt, J., Rossner, R.: Astrophys. J. 265 (1983) 901–924

    Article  Google Scholar 

  13. Goldreich, P., Schubert, G.: Astrophys. J. 150 (1967) 571–587

    Article  Google Scholar 

  14. Spiegel, E. A.: Ann. Rev. Astron. Astrophys. 10 (1972) 261–304

    Article  Google Scholar 

  15. Laurent, T. C., Preston, B. N., Sundelof, L.O.: Nature 279 (1979) 60–62

    Article  Google Scholar 

  16. Harper, G. S., Comper, W. D., Preston, B. N.: J. Biol. Chem. 259 (1984) 582–589

    Google Scholar 

  17. Linden, P. F.: Deep-Sea Res. 20 (1973) 325–340

    Google Scholar 

  18. Turner, J. S.: Deep-Sea Res. 14 (1973) 599–611

    Google Scholar 

  19. Huppert, H. E., Manins, P. C.: Deep-Sea Res. 20 (1973) 315–323

    Google Scholar 

  20. Shirtcliffe, T. G. L.: J. Fluid. Mech. 57 (1973) 27–43

    Article  Google Scholar 

  21. Taylor, J. R., Veronis, G.: Fluid Mech. 321 (1996) 315–333

    Article  Google Scholar 

  22. Stern, M. E.: Tellus 12 (1960) 172–175

    Article  Google Scholar 

  23. Ferziger, J. H., Peric, M.: Computational methods for fluid dynamics ( Springer, New York, 1997 )

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Koetter, K., Schmick, M., Markus, M. (2003). Transport Out of a Gravitationally Stable Layer with the Help of a Faster Diffusing Substance: PDE Simulations and Scaling Laws. In: Emmerich, H., Nestler, B., Schreckenberg, M. (eds) Interface and Transport Dynamics. Lecture Notes in Computational Science and Engineering, vol 32. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-07969-0_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-07969-0_31

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07320-5

  • Online ISBN: 978-3-662-07969-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics