Skip to main content

Unusual Viscosity Feature in Spinodal Decomposition Under Shear Flow

  • Conference paper
Interface and Transport Dynamics

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 32))

  • 649 Accesses

Abstract

The process of phase separation of quenched binary systems, for example quenched binary alloys or polymer blends, is generally known as spinodal decomposition [1]. It is well known that domain growth in spinodal decomposition follows scaling power-law. Hydrodynamic effect plays an important role in spinodal decomposition. For example, without hydrodynamic effect, domain grows following a scaling power-law with exponent 1/3, with hydrodynamics the exponent increases to 1 [2].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. Binder, in: Phase Transition in Materials, edited by R. W. Cahn, P. Hansen and E. J. Kramer, Materials Science and Technology Vol. 5 ( VCH Weinheim, New York, 1990 ).

    Google Scholar 

  2. Z. Zhang, H. Zhang and Y. Yang, J. Chem. Phys. 113, 8348 (2000).

    Article  Google Scholar 

  3. T. Ohta, H. Nozaki and M. Doi, J. Chem. Phys. 93, 2664 (1990)

    Article  Google Scholar 

  4. T. Ohta, H. Nozaki and M. Doi, Phys. Lett. A145, 304 (1990).

    Article  Google Scholar 

  5. J. Läuger, Chr. Laubner and W. Gronski, Phys. Rev. Lett. 75, 3576 (1995)

    Article  Google Scholar 

  6. W. Gronski, J. Länger, and Chr. Laubner, J. Mol. Struct. 383, 23 (1996)

    Article  Google Scholar 

  7. Chr. Laubner, Diplomarbeit, Albert-Ludwigs University, Freiburg, 1996

    Google Scholar 

  8. F. Corberi, G. Gonnella and A. Lamura, Phys. Rev. Lett. 81, 3852 (1998)

    Article  Google Scholar 

  9. H.Chen, and A. Chakrabarti, J. Chem. Phys. 108, 6006 (1998).

    Article  Google Scholar 

  10. A. Shinozaki and Y. Oono, Phys. Rev. A45, R2161 (1992)

    Article  Google Scholar 

  11. A. Shinozaki and Y. Oono, Phys. Rev. E48, 2622 (1993).

    Google Scholar 

  12. A. Brandt, Mathematics in Computation 31, 333 (1977)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wang, J., Gronski, W., Friedrich, C., Galenko, P., Herlach, D. (2003). Unusual Viscosity Feature in Spinodal Decomposition Under Shear Flow. In: Emmerich, H., Nestler, B., Schreckenberg, M. (eds) Interface and Transport Dynamics. Lecture Notes in Computational Science and Engineering, vol 32. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-07969-0_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-07969-0_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07320-5

  • Online ISBN: 978-3-662-07969-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics